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To find formulas for the summation of trigonometric series over integrals involving Bessel or Struve
functions, we rely on trigonometric series involving Bessel or Struve functions, which are in turn obtained
by using summation formulas for series over the product of two trigonometric functions. All these sums are
expressed either as power series in terms of Riemann’s ζ or Catalan’s β function or Dirichlet functions η

and λ, or, in certain cases, they are brought in so called closed form, which means that the infinite series
are represented by finite sums. Important limiting values cases are considered too.
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1. Introduction

In this article, we deal with finding the sum of the series

ID,f
α =

∞∑
n=1

(s)n−1Dν((an − b)x)

(an − b)α
f ((an − b)z), (1)

where a = {
1
2

}
b = {

0
1

}
, s = 1 or − 1, α ∈ R

+, f = sin or f = cos, and, Dν(x) denotes an
integral Bν, φ(x) or Sν, φ , defined by

Bν,φ(x) =
∫ 1

0
Jν(xy)φ(y)dy, Sν,φ(x) =

∫ 1

0
Hν(xy)φ(y)dy, (2)
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822 S.B. Tričković et al.

Table 1. Parameters and convergence regions.

a b s c F for

1 0 1 1 ζ 0 < x < 2π

− 1 0 η − π < x < π

2 1 1
1

2
λ 0 < x < π

− 1 0 β −π

2
< x <

π

2

where Jν and Hν are Bessel or Struve functions of the first kind and order ν ∈ R. To obtain
the sum of the series (1) we do not have to previously calculate integrals Dν((an − b)x), which
are not necessarily found elementarily. However, if we are able to do so, the series (1) will take
a different form, leading possibly to a new class of summation formulas. At first, we assume
that φ is integrable. Yet, in order to extend the class of summable series, we admit that φ is
differentiable on (0, 1), but not bounded in the neighbourhood of 0 or 1, or even not integrable on
(0, 1), however, such that there exists at least one of the integrals (2). We further require that the
functions ykφ(y) (k ∈ N) are integrable on (0, 1) as well.

Obtaining the sum of the series (1) relies on the summation of some trigonometric series
(see [6]) in terms of Riemann’s ζ or Catalan’s β function or Dirichlet functions η and λ, in the
form of a single formula, i.e.

∞∑
n=1

(s)n−1f ((an − b)x)

(an − b)α
= cπ

2
(α)f (πα/2)
xα−1 +

∞∑
i=0

(−1)iF (α − 2i − δ)

(2i + δ)! x2i+δ, (3)

where α > 0, a = { 1
2

}
b = { 0

1

}
, s = 1 or − 1, and f = {sin

cos

}
δ = {1

0

}
. The values for F and c are in

the Table 1, where ζ is Riemann’s zeta function ζ(z) = ∑∞
k=1 k−z, η and λ are Dirichlet functions

η(z) = ∑∞
k=1(−1)k−1k−z = (1 − 21−z)ζ(z), λ(z) = ∑∞

k=0(2k + 1)−z = (1 − 2−z)ζ(z) and β is
Catalan’s function β(z) = ∑∞

k=0(−1)k(2k + 1)−z.
We note that the functions ζ , η, λ are analytic in the whole complex plane except for z = 1,

where they have a pole. The integral representation β(z) = 1/
(z)
∫ ∞

0 (xz−1ex)/(e2x + 1) dx of
Catalan’s function defines an analytical function for Rz ≥ 1; but, also it satisfies the functional
equation β(z) = (π/2)z−1
(1 − z) cos (πz/2) β(1 − z) extending beta to the left side of the
complex plane Rz < 1.

2. Preliminaries

We place the integral D(x) in Equation (1), and check whether the interchange of summation and
integration

ID,f
α =

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1

0
ϕν((an − b)xy) φ(y)dy

=
∫ 1

0

( ∞∑
n=1

(s)n−1ϕν((an − b)xy)

(an − b)α
f ((an − b)z)

)
φ(y)dy

(4)
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Integral Transforms and Special Functions 823

may take place. Here is α > 0, a = { 1
2

}
b = { 0

1

}
, s = 1 or − 1, f = sin or cos, and ϕν is a Bessel

Jν or Struve function Hν . In order to justify Equation (4), we prove uniform convergence of the
series

Sϕ,f
α =

∞∑
n=1

(s)n−1ϕν((an − b)xy)f ((an − b)z)

(an − b)α
(5)

with respect to y ∈ (0, 1). For this purpose, we use an integral representation of the Bessel or Struve
function [1]

ϕν(t) = 2(t/2)ν


(1/2)
(ν + 1/2)

∫ π/2

0
sin2ν θg(t cos θ) dθ, (6)

where ν > − 1/2, ϕν = {
Jν

Hν

}
g = {cos

sin

}
. After replacing ϕν in Equation (5) with the right-hand

side integral of Equation (6), we shall first prove that we may interchange integration and
summation, i.e.

Sϕ,f
α = 2(xy/2)ν√

π
(ν + (1/2))

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α−ν

∫ π/2

0
sin2ν θ g((an − b)xy cos θ) dθ

= 2(xy/2)ν√
π
(ν + (1/2))

∫ π/2

0
sin2ν θ

( ∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α−ν
g((an − b)xy cos θ)

)
dθ,

(7)

by showing uniform convergence of the right-hand series with respect to (y, θ ) ∈ (0, 1) × [0, π /2]
on the basis of Dirichlet’s test, which says that (see [3]) the series

∑∞
n=0 an(y)bn(y) is uniformly

convergent in D, if the partial sums of
∑∞

n=0 an(y) are uniformly bounded in D and the sequence
bn(y), being monotonic for every fixed y, uniformly converges to 0.

Lemma 1 The series (5) converges uniformly with respect to y on (0, 1).

Proof In order to prove this, we treat the right-hand series of Equation (7) as a function of
y ∈ (0, 1), regarding x, z and θ as variable parameters. By making use of an elementary trigono-
metric identity, the product of f and g is represented as a sum of two trigonometric functions sin
or cos. Consequently, the series in question is split up into two series of the type

∞∑
n=1

(s)n−1τ((an − b)(z ± xy cos θ))

(an − b)α−ν
, (8)

where τ = sin or τ = cos. Let us suppose first that a = 1, b = 0. If s = 1, then there holds∣∣∣∣∣
n∑

k=1

τ(k(z ± xy cos θ))

∣∣∣∣∣ ≤ 1

sin(z ± xy cos θ)/2
≤ 1

sin ε

for 0 < z ± xy cos θ < 2π , because sin (z ± xy cos θ)/2 ≥ sin ε > 0 for each ε > 0 satisfying
ε ≤ (z ± xy cos θ)/2 ≤ π − ε. Similarly, if s = − 1, we would have∣∣∣∣∣

n∑
k=1

(−1)k−1τ(k(z ± xy cos θ))

∣∣∣∣∣ ≤ 1

cos(z ± xy cos θ)/2
≤ 1

sin ε

for −π < z ± xy cos θ < π , because cos (z ± xy cos θ)/2 ≥ sin ε > 0 for each ε > 0 satisfying
−π/2 + ε ≤ (z ± xy cos θ)/2 ≤ π/2 − ε.
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824 S.B. Tričković et al.

We now suppose a = 2, b = 1. If s = 1, then

∣∣∣∣∣
n∑

k=1

τ((2k − 1)(z ± xy cos θ))

∣∣∣∣∣ ≤ 1

sin(z ± xy cos θ)
≤ 1

sin ε

for 0 < z ± xy cos θ < π , because sin(z ± xy cos θ) ≥ sin ε > 0 for each ε > 0 satisfying ε ≤
z ± xy cos θ ≤ π − ε. Finally if s = − 1, then

∣∣∣∣∣
n∑

k=1

(−1)k−1τ((2k − 1)(z ± xy cos θ))

∣∣∣∣∣ ≤ 1

cos(z ± xy cos θ)
≤ 1

sin ε

for −π/2 < z ± xy cos θ < π/2, because cos(z ± xy cos θ) ≥ sin ε > 0 for each ε > 0 satis-
fying −π/2 + ε ≤ z ± xy cos θ ≤ π/2 − ε.

On the one hand, all the partial sums are uniformly bounded with respect to
(y, θ ) ∈ [0, 1] × [0, π /2], and considering that 0 ≤ y cos θ ≤ 1, we are able to determine bound-
aries for x and z, i.e. the convergence regions for the series (1). They are in Table 2. For instance,
in the first case, from 0 ≤ y cos θ ≤ 1, we have immediately −|x| ≤ ±xy cos θ ≤ |x|, and to
come to the condition 0 < z ± xy cos θ < 2π , it is necessary to take |x|< z < 2π −|x|; hence,
there follows |x|<π . In a similar way the rest of the convergence regions are determined. Note
that the boundaries for x are the same as for xy cos θ , because 0 ≤ y cos θ ≤ 1.

On the other hand, it is obvious that in each case the sequence 1/(an − b)α−ν monotonically tends
to 0 for α >ν, which proves uniform convergence of the right-hand series in Equation (7) with
respect to (y, θ ) ∈ (0, 1) × [0, π /2]. So the interchange of integration and summation in Equation (7)
is permitted. There still remains to prove that the left-hand series in Equation (7) uniformly
converges with respect to y ∈ (0, 1). Namely, relying on Equation (7) and uniform convergence of
the right-hand series in Equation (7) with respect to (y, θ ) ∈ (0, 1) × [0, π /2], we state that for an
arbitrary ε > 0, there exists k0, so that k ≥ k0 implies

∣∣∣∣∣ 2
(ν + 1)√
π
(ν + (1/2))

∞∑
n=k+1

(s)n−1f ((an − b)z)

(an − b)α−ν

∫ π/2

0
sin2ν θ g((an − b)xy cos θ) dθ

∣∣∣∣∣
=

∣∣∣∣∣
∫ π/2

0
sin2ν θ

(
2
(ν + 1)√

π
(ν + (1/2))

∞∑
n=k+1

(s)n−1f ((an − b)z)

(an − b)α−ν
g((an − b) xy cos θ)

)
dθ

∣∣∣∣∣
≤

∫ π/2

0
sin2ν θ

∣∣∣∣∣ 2
(ν + 1)√
π
(ν + (1/2))

∞∑
n=k+1

(s)n−1f ((an − b)z)

(an − b)α−ν
g((an − b)xy cos θ)

∣∣∣∣∣ dθ < ε.

(9)

Table 2. Parameters and convergence regions.

a b s c F Convergence region

1 0 1 1 ζ K1 = {(x, z) � − π < x < π , |x| < z < 2π − |x|}
1 0 − 1 0 η K2 = {(x, z) � − π < x < π , |x| − π < z < π − |x|}

2 1 1
1

2
λ K3 = {(x, z) | −π

2
< x <

π

2
, |x| < z < π − |x|}

2 1 − 1 0 β K4 = {(x, z) | −π

2
< x <

π

2
, |x| − π

2
< z <

π

2
− |x|}

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
4
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
0



Integral Transforms and Special Functions 825

Hence, we conclude that the convergence speed of the first series in Equation (9) does not depend
on y, meaning that the left-hand side series in Equation (7) uniformly converges with respect to
y ∈ (0, 1), and so does the series (5). �

Lemma 2 Let φ(y) be integrable. Then there holds Equation (4).

Proof Let us denote by

S
ϕ,f

α,k =
k∑

n=1

(s)k−1ϕν((an − b)xy)f ((an − b)z)

(an − b)α
(10)

the kth partial sum of the series (5). We have

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1

0
ϕν((an − b)xy)φ(y) dy

= lim
k→∞

k∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1

0
ϕν((an − b)xy)φ(y) dy

= lim
k→∞

∫ 1

0

(
k∑

n=1

(s)n−1ϕν((an − b)xy)f ((an − b)z)

(an − b)α

)
φ(y) dy

=
∫ 1

0

( ∞∑
n=1

(s)n−1ϕν((an − b)xy)f ((an − b)z)

(an − b)α

)
φ(y) dy.

The last passage is permitted because both the sequence (10) uniformly converges with respect
to y on (0, 1) (Lemma 1) and

∫ 1
0 φ(y)dy exists. �

Lemma 3 Suppose that, for a differentiable on (0, 1) and unbounded in the neighbourhood of
0 or 1 function φ, the integral

∫ 1
0 φ(y)dy does not converge. Let there exist at least one of the

integrals D((an − b)x) (D is Bφ or Sφ defined by Equation (2)), so that |D((an − b)x)|≤ Mn(x),
and for each corresponding x from Table 2, the sequence Mn(x)/(an − b)α , α > 0, monotonically
tends to 0. Then there holds Equation (4).

Proof Because of the assumption that φ is a differentiable function, we know that it is continuous
on each closed interval within (0, 1), and, as it is not bounded in the neighbourhood of 0 or 1,
without loss of generality, we can consider [δ, 1 − δ], 0 <δ < 1. Continuous function on a closed
interval is bounded, so referring again to Dirichlet’s test, we prove uniform convergence of the
series (5) with respect to y, but this time on [δ, 1 − δ], so that there holds

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1−δ

δ

ϕν((an − b)xy) φ(y) dy

=
∫ 1−δ

δ

( ∞∑
n=1

(s)n−1f ((an − b)z)ϕν((an − b)xy))

(an − b)α

)
φ(y) dy (α > 0). (11)

We regard the left-hand side series as a function of δ with variable parameters z and x. In view of
the conditions, by virtue of Dirichlet’s test, the left-hand side series in Equation (11) converges
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826 S.B. Tričković et al.

uniformly with respect to δ on (0, 1). Hence, we have

lim
δ→0+

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1−δ

δ

ϕν((an − b)xy) φ(y)) dy

=
∞∑

n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1

0
ϕν((an − b)xy) φ(y)) dy,

meaning that the right-hand side integral in Equation (11) converges, so there holds
Equation (4). �

3. Sum of the series over the product of a Bessel and a trigonometric function

The series involving the product of sine or cosine play a key role in finding the summation formula
for the series (1). That is why we investigated them thoroughly in [5].After representing the product
of g and f as the sum of two trigonometric functions sin or cos, and applying Equation (3) to both
of series in each of the particular cases, in [5] we obtained a general formula

T f,g
α =

∞∑
n=1

(s)n−1g((an − b)xy cos θ) f ((an − b)z)

(an − b)α−ν

= cπ(−1)δ(δ−d)

4
(α − ν)h(π(α − ν)/2)
((z + xy cos θ)α−ν−1 + (−1)δ(z − xy cos θ)α−ν−1) (12)

+
∞∑
i=0

(−1)δ(δ−d)+iF (α − ν − 2i − d)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy cos θ)2j+δ,

where g = {sin
cos

}
δ = {1

0

}
and d =

{
0 f =g
1 f �=g , h =

{
cos f =g
sin f �=g . All the other relevant parameters are

in Table 2.
When on the right-hand side of Equation (12) appears h = sin and α − ν = 2m or h = cos and

α − ν = 2m − 1, where m ∈ N, one should take limit. However, if α − ν − d = 2m and F = ζ , η, λ
or α − ν − d = 2m − 1 and F =β (m ∈ N), the sum of the series on the right-hand side of
Equation (12) consists of a finite number of terms because of the vanishing functions ζ , η, λ
at even negative integers, and the function β at odd negative integers. So, for this choice of
parameters, the formula (12) is brought into so called closed form (see [5])

T
f,g

2m+d+ε =
∞∑

n=1

(s)n−1g((an − b)xy cos θ) f ((an − b)z)

(an − b)2m+d+ε

= cπ

2

m∑
j=0

(
2m + d + ε − 1

2j + δ

)
(−1)δ(δ−d)z2m−2j+d−δ+ε−1(xy cos θ)2j+δ

(2m + d + ε − 1)! h(mπ + (d + ε)π/2)
(13)

+
m∑

i=0

(−1)δ(δ−d)+iF (2m − 2i + ε)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy cos θ)2j+δ,

where g = {sin
cos

}
δ = {1

0

}
, and independently of that d =

{
0 f =g
1 f �=g , h =

{
cos f =g
sin f �=g . For F = ζ , η, λ,

there holds ε = 0, but for F =β it is ε = 1. The other relevant parameters are in Table 2. The
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formula (13) comprises some particular results from [4], but it is more suitable for immediate
obtaining sums of some infinite series as well.

Now, we find the sum (5) by virtue of the summation formula (12), replacing it in Equation (7)
and developing the binomials (z ± xy cos θ)α−ν−1 into binomial series. After a rearrangement
we obtain

Sϕ,f
α = (xy/2)ν

Gν

⎛
⎝ cπ(−1)δ(δ−d)

2
(α − ν)h(π(α − ν)/2)

∞∑
j=0

(
α − ν − 1

2j + δ

)
zα−ν−1−2j−δ(xy)2j+δI2ν,2j+δ

+
∞∑
i=0

(−1)δ(δ−d)+iF (α − ν − 2i − d)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy)2j+δI2ν,2j+δ

⎞
⎠ ,

(14)

where, for the sake of simplicity, Gν = √
π
(ν + 1/2) and I2ν,2j+δ = ∫ π/2

0 sin2ν θ cos2j+δ θ dθ .
Introducing sin θ = t in the last integral, we have

I2ν,2j+δ = 1

2

∫ 1

0
(t2)(2ν+1)/2−1(1 − t2)(2j+δ+1)/2−1 d(t2) = 1

2
B

(
ν + 1

2
, j + δ + 1

2

)
, (15)

and come to the required summation formula for the series (5)

Sϕ,f
α = (−1)δ(δ−d)c

√
π(xy/2)ν

2
(α − ν)h(π(α − ν)/2)

∞∑
j=0

(
α − ν − 1

2j + δ

)
zα−ν−2j−1−δ(xy)2j+δGj

+ (xy/2)ν√
π

∞∑
i=0

(−1)δ(δ−d)+iF (α − ν − 2i − d)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy)2j+δGj ,

(16)

where α >ν > − 1/2, ϕν = {
Jν

Hν

}
g = {cos

sin

}
δ = {0

1

}
; independently of that d =

{
0 f =g
1 f �=g and

h =
{

cos f =g
sin f �=g . The other relevant parameters are given in Table 2, and for the sake of brevity, we

have introduced Gj =
( j + (δ + 1)/2)/
( j + ν + 1 + δ/2).

3.1. Limiting values

We shall now consider some important particular cases of the formula (16). If h = sin and
α − ν = 2m or h = cos and α − ν = 2m − 1, m ∈ N division by zero is not defined, and we
have to take limit. After choosing a = 1, b = 0, s = 1, there must be c = 1, F = ζ . Also if we set
ϕν = Jν, g = cos, δ = 0, f = cos, then d = 0, h = cos, and we have

SJ,cos
α =

√
π(xy/2)νzα−ν−1

2
(α − ν) cos(π(α − ν)/2)

∞∑
j=0

(
α − ν − 1

2j

)
(xy/z)2j
(j + 1/2)


(j + ν + 1)

+ (xy/2)ν√
π

∞∑
i=0

(−z2)iζ(α − ν − 2i)

(2i)!
i∑

j=0

(xy/z)2j
(2i

2j

)

(j + 1/2)


(j + ν + 1)
.
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In order to take limit, we first denote σ =α − ν and replace α with σ + ν, then we find

�2m−1,ν(x, y, z) = lim
σ→2m−1

⎡
⎣ √

π(xy/2)νzσ−1

2
(σ) cos(πσ/2)

m−1∑
j=0

(
σ − 1

2j

)
(xy/z)2j
(j + 1/2)


(j + ν + 1)

+ (xy/2)ν√
π

m−1∑
i=0

(−z2)iζ(σ − 2i)

(2i)!
i∑

j=0

(xy/z)2j
(2i

2j

)

(j + 1/2)


(j + ν + 1)

⎤
⎦

= (−z2)m−1(xy/2)ν

(2m − 2)!√π

m−1∑
k=0

(xy/z)2k
(2m−2

2k

)
(ψ(2m − 2k − 1)

+γ − log z)
(k + 1/2)


(ν + k + 1)

+ (xy/2)ν√
π

m−2∑
k=0

(−z2)kζ(2m − 2k − 1)

(2k)!
k∑

j=0

(xy/z)2j
(2k

2j

)

(j + 1/2)


(j + ν + 1)
,

and

R2m−1,ν(x, y, z) = lim
σ→2m−1

√
π(xy/2)νzσ−1

2
(σ) cos(πσ/2)

∞∑
j=m

(
σ − 1

2j

)
(xy/z)2j
(j + 1/2)


(j + ν + 1)

= − (−z2)m−1(xy/2)ν

(2m − 1)!√π

∞∑
j=m

(xy/z)2j
(j + 1/2)( 2j

2m−1

)

(ν + j + 1)

.

Finally, we obtain

S
J,cos
2m−1+ν =

∞∑
n=1

Jν(nxy)

n2m−1+ν
cos nz = �2m−1,ν(x, y, z) + R2m−1,ν(x, y, z)

+ (xy/2)ν√
π

∞∑
i=m

(−z2)iζ(2m − 1 − 2i)

(2i)!
i∑

j=0

(xy/z)2j
(2i

2j

)

(j + 1/2)


(j + ν + 1)
,

which holds for (x, z) ∈ K1 (see Table 2 on the page 4).

Example 1 Let m = 3. Then we have

∞∑
n=1

Jν(nxy)

n7+ν
cos nz = (xy/2)ν√

π

(
− 49 z6

14400 
(ν + 1)
− 25 (xy)2 z4

1152 
(ν + 2)
− 3 (xy)4 z2

128 
(ν + 3)

+
(

z6

720 
(ν + 1)
+ (xy)2 z4

96 
(ν + 2)
+ (xy)4 z2

64 
(ν + 3)
+ (xy)6

384 
(ν + 4)

)
log z

+
(

z4

24 
(ν + 1)
+ (xy)2 z2

8 
(ν + 2)
+ (xy)4

32 
(ν + 3)

)
ζ(3) −

(
z2

2 
(ν + 1)

+ (xy)2

4 
(ν + 2)

)
ζ(5) + ζ(7)


(ν + 1)
+ z6

7!
∞∑

j=4

(xy/z)2j
(j + 1/2)(2j

7

)

(ν + j + 1)

+
∞∑
i=4

(−1)iζ(7 − 2i)

(2i)!
i∑

j=0

(xy)2j z2i−2j
(2i

2j

)

(j + 1/2)


(j + ν + 1)

⎞
⎠ .
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3.2. Closed form cases

The summation formula (16) takes a closed form in certain cases. Namely, the series on the
right-hand side truncates because of the vanishing of F functions, i.e. α − ν − d = 2m if F = ζ , η, λ
and α − ν − d = 2m − 1 if F =β (m ∈ N), so that we write α = ν + 2m + d − ε, and obtain

∞∑
n=1

(s)n−1ϕν((an − b)xy)f ((an − b)z)

(an − b)ν+2m+d−ε

= (−1)δ(δ−d)c
√

π(xy/2)ν

2
(2m + d − ε)h(mπ + π(d − ε)/2)

×
m∑

j=0

(
2m + d − ε − 1

2j + δ

)
z2m+d−ε−2j−δ−1(xy)2j+δGj

+ (xy/2)ν√
π

m∑
i=0

(−1)δ(δ−d)+iF (2m − 2i − ε)

(2i + d)!

×
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy)2j+δGj , (17)

where ϕν = {
Jν

Hν

}
g = {cos

sin

}
δ = {0

1

}
, d =

{
0 f =g

1 f �=g
, h =

{
cos f =g
sin f �=g , ε = 0 if F = ζ , η, λ and

ε = 1 if F =β. The parameters a, b, s, c, F and convergence regions are read from Table 2.
Particular closed form cases found in the literature (see Example 6), can be obtained from
Equation (17).

Example 2 Consider the formula (74.1.19) in [2]
∞∑

n=1

Jν(nx)

nν+2
cos nx = 1

3
(ν + 2)
2−ν−3xν[3x2 + (ν + 1)(6x2 − 12πx + 4π2)],

where 0 < x <π , Rν > − 3/2. The same result can be obtained by means of Equation (17) for
z = x, y = 1, Rν > − 1/2, taking ϕν = Jν , a = 1, b = 0, s = 1, c = 1, F = ζ , ε = 0, δ = 0, d = 0,
f = cos,h = cos, m = 1,α = ν + 2. Similarly, the sums (74.1.20), (74.1.21) and (74.1.22) from [2]
are contained in Equation (17).

Example 3 By means of the formula (17) we can find the sums for the series that are not known
in the literature. If we consider only finite sums, there are no results for the series with α − ν ≥ 3,
α − ν ∈ N0, whereas Equation (17) contains these cases too. For example, for the choice of
parameters α − ν = 3, ϕ = J, f = sin, a = 2, b = 1, s = 1, from the formula (17) one obtains

∞∑
n=1

Jν((2n − 1)x)

(2n − 1)ν+3
sin(2n − 1)z = (π − z)π

2ν+3
(ν + 1)
xνz − π

2ν+4
(ν + 2)
xν+2,

for ν > − 1/2, where the convergence region is K3.

Example 4 If we now choose α − ν = 4, ϕ = J, f = cos, a = 1, b = 0, s = −1,
Equation (17) becomes

∞∑
n=1

(−1)n−1Jν(nx)

nν+4
cos nz = (7π4 − 30z2π2 + 15z4)xν

45 · 2ν+4
(ν + 1)
+ (3z2 − π2)xν+2

3 · 2ν+4
(ν + 2)
+ xν+4

2ν+6
(ν + 3)
,

for ν > − 1/2. The convergence region is K2.
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Example 5 If we finally choose parameters: α = 5, ν = 2, ϕ = H, f = sin, a = 2, b = 1,
s = − 1, we obtain a sum

∞∑
n=1

(−1)n−1H2((2n − 1)x)

(2n − 1)5
sin(2n − 1)z = 1

30
x3z,

valid in the convergence region K4. Note that this result coming out of the formula (17) cannot
be found in the literature for α − ν = 3.

4. Sum of the series (1)

Now, we make use of Equation (16), which is, as we have shown, the formula for finding sum of
the series (5), i.e. the right-hand series of Equation (4). Thus we obtain the summation formula
of the left-hand side series in Equation (4), which is actually the summation formula for the
series (1):

∞∑
n=1

(s)n−1Dν((an − b)x)

(an − b)α
f ((an − b)z)

= (−1)δ(δ−d)c
√

π(x/2)ν

2
(α − ν)h(π(α − ν)/2)

∞∑
j=0

(
α − ν − 1

2j + δ

)
zα−ν−2j−1−δx2j+δIν+2j+δ

+ (x/2)ν√
π

∞∑
i=0

(−1)δ(δ−d)+iF (α − ν − 2i − d)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δx2j+δIν+2j+δ,

(18)

where Dν = {
Bν,φ

Sν,φ

}
g = {cos

sin

}
δ = {0

1

}
, d =

{
0 f =g

1 f �=g
and h =

{
cos f =g
sin f �=g , and for the sake of sim-

plicity and brevity, we have denoted Iν+2j+δ = Gj

∫ 1
0 φ(y)yν+2j+δ dy. The parameters a, b, s, c, F

as well as convergence regions (which we determined earlier) are read from Table 2.

4.1. Limiting value cases

Very important particular cases of the formula (18) ensue if h = sin and α − ν = 2m or h = cos
and α − ν = 2m − 1, m ∈ N, when the first term of Equation (18) has zero as a divisor, so we have
to deal with a limiting value. We denote σ =α − ν and replace α with σ + ν in Equation (18).
Afterwards, choosing, for instance, a = 2, b = 1, s = 1, c = 1/2, F =λ, ϕν =Hν , g = sin, δ = 1,
f = cos, d = 1, h = sin, and finally φ(y) = y−1, we have

I
Sφ,cos
σ+ν =

√
π(x/2)ν

4
(σ) sin(πσ/2)

∞∑
j=0

(
σ − 1

2j + 1

)
x2j+1zσ−2j−2j !

(ν + 2j + 1)
(j + ν + 3/2)

+ (x/2)ν√
π

∞∑
i=0

(−1)iλ(σ − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
x2j+1z2i−2j j !

(ν + 2j + 1)
(j + ν + 3/2)
,
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so that we find

�2m,ν(x, z) = lim
σ→2m

⎡
⎣ √

π(x/2)ν

4
(σ) sin(πσ/2)

m−1∑
j=0

(
σ − 1

2j + 1

)
x2j+1zσ−2j−2j !

(ν + 2j + 1)
(j + ν + 3/2)

+ (x/2)ν√
π

m−1∑
i=0

(−1)iλ(σ − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
x2j+1z2i−2j j !

(ν + 2j + 1)
(j + ν + 3/2)

⎤
⎦

= (x/2)ν√
π

[
(−1)m

2

m−1∑
i=0

(log(z/2) − ψ(2m − 2i − 1) − γ )x2i+1z2m−2i−2i!
(ν + 2i + 1)(2m − 2i − 2)!(2i + 1)!
(ν + i + 3/2)

+
m−2∑
i=0

(−1)iλ(2m − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
x2j+1z2i−2j j !

(ν + 2j + 1)
(ν + j + 3/2)

⎤
⎦,

and

R2m,ν(x, z) = lim
σ→2m

√
π(x/2)ν

4
(σ) sin(πσ/2)

∞∑
j=m

(
σ − 1

2j + 1

)
x2j+1zσ−2j−2j !

(ν + 2j + 1)
(j + ν + 3/2)

= (−1)m(x/2)ν

2(2m)!√π

∞∑
j=m

x2j+1z2m−2j−2j !(2j+1
2m

)
(ν + 2j + 1)
(ν + j + 3/2)

.

Finally, the series involving the product of a Struve integral and cosine is as follows:

I
Sφ,cos
2m+ν =

∞∑
n=1

cos(2n − 1)z

(2n − 1)2m+ν

∫ 1

0

Hν((2n − 1)xy)

y
dy = �2m,ν(x, z) + R2m,ν(x, z)

+ (x/2)ν√
π

∞∑
i=m

(−1)iλ(2m − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
x2j+1z2i−2j j !

(ν + 2j + 1)
(ν + j + 3/2)

where (x, z) ∈ K3 (see Table 2 on the page 4).

Example 6 If we choose m = 2, then we obtain

∞∑
n=1

cos(2n − 1)z

(2n − 1)4+ν

∫ 1

0

Hν((2n − 1)xy)

y
dy

= (x/2)ν√
π

[
x((log(z/2) − (3/2))z2 + (7/2)ζ(3))

4(ν + 1)
(ν + 3/2)

+ 1

48

∞∑
j=2

x2j+1z2−2j j !(2j+1
4

)
(ν + 2j + 1)
(ν + j + 3/2)

+ x3 log(z/2)

12(ν + 3)
(ν + 5/2)

+
∞∑
i=2

(−1)iλ(3 − 2i)

(2i + 1)!
i∑

k=0

(
2i + 1

2k + 1

)
x2k+1z2i−2kk!

(ν + 2k + 1)
(k + ν + 3/2)

]
.

Similarly, we can obtain the other particular cases, without having previously to calculate the
integral involved.
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4.2. Closed form cases

The infinite series (18) is brought in closed form if F = ζ , η, λ and α − ν − d = 2m or F =β and
α − ν − d = 2m − 1 (m ∈ N), so that we write α = ν + 2m + d − ε, and have

∞∑
n=1

(s)n−1Dν((an − b)x)

(an − b)ν+2m+d−ε
f ((an − b)z)

= (−1)δ(δ−d)c
√

π(x/2)ν

2
(2m + d − ε)h(mπ + π(d − ε)/2)

×
m∑

j=0

(
2m + d − ε − 1

2j + δ

)
z2m+d−ε−2j−1−δx2j+δIν+2j+δ

+ (x/2)ν√
π

m∑
i=0

(−1)δ(δ−d)+iF (2m − 2i − ε)

(2i + d)!

×
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δx2j+δIν+2j+δ, (19)

where Dν = {
Bν,φ

Sν,φ

}
g = {cos

sin

}
δ = {0

1

}
, d =

{
0 f =g

1 f �=g
and h =

{
cos f =g
sin f �=g , ε = 0 if F = ζ , η, λ and

ε = 1 if F =β. The parameters a, b, s, c, F and convergence regions are read from Table 2.

Example 7 First we take a = 1, b = 0, s = 1 in Equation (19), there follows c = 1 and F = ζ

(see Table 2), then ε = 0. For D2 = S2, φ , there must be g = sin, which means δ = 1. If we take
f = cos, then h = sin and d = 1 because f �= g. We choose φ(y) = ctg y. Let m = 1. The function
ctg y is unbounded in the neighbourhood of 0 and the integral

∫ 1
0 ctg y dy does not converge, so

we cannot apply Lemma 1. However, for 0 < |x|<π , limy→0+ ctg yH2(nxy) = 0, where n ∈ N,
the function ctg yH2(nxy) is integrable with respect to y ∈ (0, 1), and we have∣∣∣∣x

∫ 1

0
ctg yH2(nxy) dy

∣∣∣∣ =
∣∣∣∣
∫ x

0
ctg

t

x
H2(nt) dt

∣∣∣∣ �
∫ x

0

∣∣∣∣ctg
t

x
H2(nt)

∣∣∣∣ dt

�
∫ π

0

∣∣∣∣ctg
t

π
H2(nt)

∣∣∣∣ dt.

Also, |tg (t/π)| > |t |/π implies |ctg (t/π)| < π/|t |, for |t|<π . Additionally, we find

|H2(nt)| = 2n|t |
3π

∣∣∣∣1 − 3πJ1(nt)

2nt
+ 3πJ2(nt)

n2t2

∣∣∣∣ <
2n|t |
3π

(
1 + 3π

8

)

So, ∣∣∣∣ctg
t

π
H2(nt)

∣∣∣∣ =
∣∣∣∣ctg

t

π

∣∣∣∣ · |H2(nt)| <
π

|t | · 2n|t |
3π

(
1 + 3π

8

)
= 2n

3

(
1 + 3π

8

)
,

and there follows∫ π

0

∣∣∣∣ctg
t

π
H2(nt)

∣∣∣∣ dt <
2n

3

(
1 + 3π

8

) ∫ π

0
dt = 2nπ

3

(
1 + 3π

8

)
,

which means that
∣∣∣∫ 1

0 ctg yH2(nxy) dy

∣∣∣ < nπ(8 + 3π)/12|x| = Mn(x), and we can easily see

that for each x, 0 < |x|<π , the sequence Mn(x)/n3 → 0 monotonically, so that Lemma 3 may be
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applied. Making use of Equation (13), we obtain

∞∑
n=1

cos nz

n5

∫ 1

0
ctg yH2(nxy) dy

= x3

1156
√

π
((8π2 − 24πz + 12z2) log(2 sin 1) + (12π2 − 36πz + 18z2)(Cl2(2) + Cl3(2))

− (6π2 − 18πz + 9z2)Cl4(2)) + x5

4608
√

π

(
log(2 sin 1) + 10Cl2(2) + 20Cl3(2)

− 30(Cl4(2) + Cl5(2)) + 15Cl6(2)),

where |x|<π and |x|< z < 2π −|x| (see Table 2). On the right-hand side are Clausen functions
defined by [1]

Cl2ν(x) =
∞∑

n=1

sin nx

n2ν
, Cl2ν−1(x) =

∞∑
n=1

cos nx

n2ν−1
, ν ∈ N.

Example 8 Let a = 1, b = 0, s = − 1 in Equation (19), implying c = 0 and F =η, ε = 0. For
D1/2 = B1/2, φ there must be g = cos and δ = 0. Further, we take f = cos implying h = cos, d = 0
because f = g. Let m = 2. We choose φ(y) = (1 − y2)−1/2. It is unbounded about 1, but integrable
on (0, 1), thus satisfying conditions of Lemma 2. So applying Equation (19), we find

∞∑
n=1

(−1)n−1 cos nz

n9/2

∫ 1

0

J1/2(nxy)√
1 − y2

dy

= π
√

xπ

4
2(1/4)

(
7π4

90
− π2z2

3
+ z4

6
− π2x2

20
+ 3x2z2

20
+ 7x4

720

)
,

where |x|<π and |x|−π < z <π −|x| (see Table 2).

We have already said that in order to find the sum of the series (1), it is not necessary to calculate
the integrals (2). Besides, it does not have to be done elementarily.Yet, if we calculate the integral
in Example 8, the above series takes a different form, giving rise to the following formula

∞∑
n=1

(−1)n−1 cos nz

n9/2
J 2

1/4

(
nx

2

)
=

√
xπ

2
2(1/4)

(
7π4

90
− π2z2

3
+ z4

6
− π2x2

20
+ 3x2z2

20
+ 7x4

720

)
,

whereby we obtain the sum of a new series. Generally speaking, for ν > − 1, there holds∫ 1

0

Jν(nxy)√
1 − y2

dy = π

2
J 2

ν/2

(nx

2

)
,

so for this type of integrals there exists a whole class of new closed form formulas.

Example 9 Further, we take a = 2, b = 1, s = 1 in Equation (19). In Table 2, we read c = 1/2 and
F =λ. So ε = 0. If we choose D1/3 = S1/3, φ , f = sin, then we have g = cos, δ = 0, d = 1, h = sin.
Let m = 1 and φ(y) = log y, which is unbounded in the neighbourhood of 0, but integrable on
(0, 1), so Lemma 2 holds. Applying Equation (19), we obtain

I
Sφ,sin
1 =

∞∑
n=1

sin(2n − 1)z

(2n − 1)10/3

∫ 1

0
log yH1/3((2n − 1)xy) dy = 27 3

√
x
(1/6)

640 3
√

2

(
zπ + z2 + 12x2

275

)
,

where |x|<π /2 and |x|< z <π −|x| (see Table 2).
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Example 10 Finally, let in Equation (19) be a = 2, b = 1, s = − 1, implying c = 0, F =β, ε = 1.
If we choose D1 = B1, φ , there follows g = cos and δ = 0. If f = sin, then d = 1 and h = sin
because f �= g. Further, let φ(y) = yμ, μ> − 2, and m = 1. The integral

∫ 1
0 yμ dy does not nec-

essarily converge for μ> − 2. However, making use of Equation (6), where we substitute u for
cos t , we come, for |x|<π /2, to the following estimate

yμ|J1((2n − 1)xy)| � 2|x|
π

(2n − 1)yμ+1

∣∣∣∣ sin((2n − 1)xy)

(2n − 1)xy

∣∣∣∣ < (2n − 1)yμ+1,

whereupon we find∣∣∣∣
∫ 1

0
J1((2n − 1)xy)yμ dy

∣∣∣∣ �
∫ 1

0
|J1((2n − 1)xy)|yμ dy < (2n − 1)

∫ 1

0
yμ+1 dy = 2n − 1

μ + 2
,

with Mn(x) = (2n − 1)/(μ+ 2), so Mn(x)/(2n − 1)3 monotonically tends to zero when n increases
to infinity, which means that Lemma 3 holds, and by applying Equation (19), we obtain

I
Bφ,sin
3 =

∞∑
n=1

(−1)n−1 sin(2n − 1)z

(2n − 1)3

∫ 1

0
J1((2n − 1)xy) yμdy = πxz

8(μ + 2)
,

|x|<π /2 and |x|−π /2 < z <π /2 −|x| (see Table 2).
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[6] S.B. Tričković, M.V. Vidanović, and M.S. Stanković, On the summation of trigonometric series, Integral Transforms

Spec. Func. 19(6) (2008), pp. 441–452.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
4
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
0


