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This paper is concerned with the summation of series (1). To find the sum of the series (1) we first
derive formulas for the summation of series whose general term contains a product of two trigonometric
functions. These series are expressed in terms of Riemann’s zeta, Catalan’s beta function or Dirichlet
functions eta and lambda, and in certain cases, thoroughly investigated here, they can be brought in
closed form, meaning that the infinite series are represented by finite sums.
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1. Introduction

In this paper we shall find the sum of the series

I T ,f
α =

∞∑
n=1

(s)n−1T ((an − b)x)

(an − b)α
f ((an − b)z), α ∈ R

+, (1)

where a = {
1
2

}
b = {

0
1

}
, s = 1 or −1, f is sin or cos, and T denotes trigonometric integral

Sφ or Cφ defined by

Sφ(x) =
∫ 1

0
φ(y) sin xy dy, Cφ(x) =

∫ 1

0
φ(y) cos xy dy. (2)

To obtain the sum of the series (1) we do not have to calculate integrals T ((an − b)x)

previously. At first, we assume that φ is integrable. Yet, in order to extend the class of
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752 S. B. Tričković et al.

Table 1.

a b s c F for

1 0 1 1 ζ 0 < x < 2π

−1 0 η −π < x < π

2 1 1 1/2 λ 0 < x < π

−1 0 β −(π/2) < x < (π/2)

summable series, we admit that φ is differentiable on (0, 1), but not necessarily bounded
in the neighborhood of 0 or 1, or not integrable on (0, 1), however, such that there exists
at least one of the integrals (2). We further require that the functions ykφ(y) (k ∈ N) are
integrable on (0, 1) as well.

Obtaining sums of the series (1) relies on the summation of some trigonometric series.
Making use of the method for finding the formula (6) from our article [1] (see Theorem 1,
p. 396), we can derive the other particular cases as well, writing all of them, in terms of
Riemann’s ζ or Catalan’s β function or Dirichlet functions η and λ, in the form of a single
formula, i.e.,

∞∑
n=1

(s)n−1f ((an − b)x)

(an − b)α
= cπ

2	(α)f (πα/2)
xα−1 +

∞∑
i=0

(−1)iF (α − 2i − δ)

(2i + δ)! x2i+δ, (3)

where α > 0, a = {
1
2

}
b = {

0
1

}
, s = 1 or −1, and f = {

sin
cos

}
δ = {

1
0

}
. The values for F

and c are in the table 1, where ζ is Riemann’s zeta function ζ(z) = ∑∞
k=1 k−z, η and λ are

Dirichlet functions η(z) = ∑∞
k=1(−1)k−1k−z = (1 − 21−z)ζ(z), λ(z) = ∑∞

k=0(2k + 1)−z =
(1 − 2−z)ζ(z), and β is Catalan’s function β(z) = ∑∞

k=0(−1)k(2k + 1)−z.

Remark 1 We note that the functions ζ, η, λ are analytic in the whole complex
plane except for z = 1, where they have a pole. The integral representation β(z) =
(1/	(z))

∫ ∞
0 (xz−1ex/(e2x + 1)) dx of Catalan’s function defines an analytical func-

tion for Re z ≥ 1, but also it satisfies the functional equation β(z) = (π/2)z−1	(1 −
z) cos(πz/2)β(1 − z) extending beta to the left side of the complex plane Re z < 1.

Remark 2 After multiplying by (2(x/2)ν)/(	(1/2)	(ν + (1/2))) the integrals (2) with
φ(y) = (1 − y2)ν−1/2, and substituting y = cos θ , we obtain

ϕν(z) = 2(z/2)ν

	(1/2)	(ν + (1/2))

∫ π/2

0
sin2ν θ g(z cos θ) dθ, (4)

where Re ν > −(1/2), ϕν = {
Jν

Hν

}
g = { cos

sin }, Jν and Hν are the Bessel and Struve functions
respectively of the first kind and order ν. The integrals Sφ(x) and Cφ(x) in equation (2) can be
considered as generalizations of Bessel and Struve functions, respectively, since their integral
representations (4) are obtained when the particular function φ(y) = (1 − y2)ν−1/2 is chosen.
Just because of this, in this paper we generalize some of our results from [2].

2. Preliminaries

In order to find a sum of the series (1) we set one of the integrals (2) instead of T (x), so

that in the sequel we use denotations T (x) =
{

Sφ

Cφ

}
g = {

sin
cos

}
, meaning that g is one of the
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Series of trigonometric integral and trigonometric function 753

trigonometric functions in equation (2), which depends on the choice of Sφ or Cφ . Afterwards,
we shall prove that we are allowed to interchange summation and integration, i.e.,

I T ,f
α =

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1

0
φ(y)g((an − b)xy) dy

=
∫ 1

0

( ∞∑
n=1

(s)n−1f ((an − b)z)g((an − b)xy)

(an − b)α

)
φ(y) dy (α ∈ R

+),

(5)

relying on uniform convergence of the right-hand series with respect toy by virtue of Dirichlet’s
test, which says that (see [3]) the series

∑∞
n=0 an(y)bn(y) is uniformly convergent in D, if

the partial sums of
∑∞

n=0 an(y) are uniformly bounded in D, and the sequence bn(y), being
monotonic for every fixed y, uniformly converges to 0. We emphasize that we treat the above
right-hand series as a function of y ∈ (0, 1), regarding x and z as variable parameters.

LEMMA 1 Let φ(y) be integrable. Then the right-hand series converges uniformly and there
holds equation (5).

Proof We make use of an elementary trigonometric identity, whereby representing the prod-
uct of f and g, as the sum of two trigonometric functions sin or cos. Now this series is split
up into two series of the type

∞∑
n=1

(s)n−1τ((an − b)(z ± xy))

(an − b)α
(α ∈ R

+), (6)

where τ = sin or τ = cos. Let us suppose first that a = 1, b = 0. If s = 1, then there holds∣∣∣∣∣
n∑

k=1

τ(k(z ± xy))

∣∣∣∣∣ ≤ 1

sin((z ± xy)/2)
≤ 1

sin ε

for 0 < z ± xy < 2π , because sin((z ± xy)/2) ≥ sin ε > 0 for each ε > 0 satisfying ε ≤
((z ± xy)/2) ≤ π − ε.

Similarly, if s = −1, we would have∣∣∣∣∣
n∑

k=1

(−1)k−1τ(k(z ± xy))

∣∣∣∣∣ ≤ 1

cos((z ± xy)/2)
≤ 1

sin ε

for −π < z ± xy < π , because cos((z ± xy)/2) ≥ sin ε > 0 for each ε > 0 satisfying
−(π/2) + ε ≤ ((z ± xy)/2) ≤ (π/2) − ε.

We now suppose a = 2, b = 1. If s = 1, then∣∣∣∣∣
n∑

k=1

τ((2k − 1)(z ± xy))

∣∣∣∣∣ ≤ 1

sin(z ± xy)
≤ 1

sin ε

for 0 < z ± xy < π , because sin(z ± xy) ≥ sin ε > 0 for each ε > 0 satisfying ε ≤ z ± xy ≤
π − ε. Finally, if s = −1, then∣∣∣∣∣

n∑
k=1

(−1)k−1τ((2k − 1)(z ± xy))

∣∣∣∣∣ ≤ 1

cos(z ± xy)
≤ 1

sin ε
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754 S. B. Tričković et al.

for −(π/2) < z ± xy < (π/2), because cos(z ± xy) ≥ sin ε > 0 for each ε > 0 satisfying
−(π/2) + ε ≤ z ± xy ≤ (π/2) − ε.

So in all these cases, partial sums are uniformly bounded with respect to y ∈ (0, 1), and
on this basis, we determine values of x and z giving rise to this, thus finding boundaries for
convergence regions of the series (1) in each of four considered cases. They are in table 2.
First, we have immediately −|x| ≤ ±xy ≤ |x|, and to obtain the condition 0 < z ± xy < 2π ,
it is necessary to take |x| < z < 2π − |x|, from where there follows |x| < π . In the second
case, to satisfy −π < z ± xy < π , it is necessary to take |x| − π < z < π − |x|, and we have
again |x| < π . In the third, 0 < z ± xy < π , it is necessary to take |x| < z < π − |x|, so that
we easily find |x| < (π/2). Finally, for −(π/2) < z ± xy < (π/2), it is necessary to take
|x| − (π/2) < z < (π/2) − |x| giving again |x| < (π/2).

On the other hand, the sequence 1/((an − b)α) obviously monotonically tends to 0 for
α > 0, and uniformly converges to 0 with respect to y. Together with the above, this proves
an uniform convergence of the right-hand series in equation (5) with respect to y ∈ (0, 1). So
the interchange of integration and summation in equation (5) is permitted, and accordingly,
there holds equation (5). �

LEMMA 2 Suppose that, for a differentiable on (0, 1) and unbounded in the neighborhood of
0 or 1 function φ, the integral

∫ 1
0 φ(y)dy does not converge. Let there exist at least one of the

integrals T ((an − b)x) (T is Sφ or Cφ defined by equation (2)), so that |T ((an − b)x)| ≤
Mn(x), and for each corresponding x from table 2, the sequence (Mn(x))/((an − b)α), α > 0,
monotonically tends to 0. Then there holds (5).

Proof Because of the assumption that φ is differentiable function, we know that it is contin-
uous on each closed interval within (0, 1), and, as it is not bounded in the neighborhood of 0
or 1, without loss of generality, we can consider [δ, 1 − δ], 0 < δ < 1. Continuous function
on a closed interval is bounded, and referring again to Dirichlet’s test, we prove uniform con-
vergence of the right-hand series in equation (5) with respect to y, but this time on [δ, 1 − δ],
so that there holds

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1−δ

δ

φ(y)g((an − b)xy) dy

=
∫ 1−δ

δ

( ∞∑
n=1

(s)n−1f ((an − b)z)g((an − b)xy)

(an − b)α

)
φ(y) dy (α ∈ R

+).

(7)

We regard the left-hand series as a function of δ with variable parameters z and x. In view
of the conditions, by virtue of Dirichlet’s test, the left-hand series in equation (7) converges

Table 2.

a b s c F Convergence regions

1 0 1 1 ζ {(x, z) : −π < x < π, |x| < z < 2π − |x|}
1 0 −1 0 η {(x, z) : −π < x < π, |x| − π < z < π − |x|}
2 1 1 1/2 λ {(x, z) : −(π/2) < x < (π/2), |x| < z < π − |x|}
2 1 −1 0 β {(x, z) : −(π/2) < x < (π/2), |x| − (π/2) < z < (π/2) − |x|}
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Series of trigonometric integral and trigonometric function 755

uniformly with respect to δ on (0, 1). Hence, we have

lim
δ→0+

∞∑
n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1−δ

δ

φ(y)g((an − b)xy) dy

=
∞∑

n=1

(s)n−1f ((an − b)z)

(an − b)α

∫ 1

0
φ(y)g((an − b)xy) dy,

meaning that the right-hand integral in equation (7) converges, so there holds equation (5). �

3. Series over the product of trigonometric functions

We have seen that in finding the summation formula for equation (1), the key role plays the
series including the product of two trigonometric functions. That is why we are going to
investigate them thoroughly. Now, by applying equation (3) to both series in each of the above
particular cases, we obtain the following general formula

Sf,g
α =

∞∑
n=1

(s)n−1g((an − b)xy) f ((an − b)z)

(an − b)α

= cπ(−1)δ(δ−d)

4	(α)h(πα/2)

(
(z + xy)α−1 + (−1)δ(z − xy)α−1

)

+
∞∑
i=0

(−1)δ(δ−d)+iF (α − 2i − d)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy)2j+δ, (8)

where g = {
sin
cos

}
δ = {

1
0

}
, and d =

{
0 f =g
1 f �=g , and also there holds h =

{
cos f =g
sin f �=g . All the other

relevant parameters are in table 2.

3.1 Limiting values of equation (8)

When on the right-hand side of equation (8) appears h = sin and α = 2m or h = cos and
α = 2m − 1, where m ∈ N, one should take limit. Let us consider a particular case of the
formula (8), taking a = 1, b = 0, s = 1, which implies c = 1, F = ζ . If g = cos and f = sin
then δ = 0, h = sin, d = 1, so we have

∞∑
n=1

sin nz cos nxy

nα
= π

(z + xy)α−1 + (z − xy)α−1

4	(α) sin(πα/2)

+
∞∑
i=0

(−1)iζ(α − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j

)
z2i−2j+1(xy)2j .

As we have said, we take limit

lim
α→2m

[
π

(z + xy)α−1 + (z − xy)α−1

4	(α) sin(πα/2)

+
m−1∑
i=0

(−1)iζ(α − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j

)
z2i−2j+1(xy)2j

]
= G2m(x, y, z),
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756 S. B. Tričković et al.

where we have found

G2m(x, y, z) = (−1)m

2(2m − 1)!
(
(z + xy)2m−1(log(z + xy) − ψ(2m) − γ )

+ (z − xy)2m−1(log(z − xy) − ψ(2m) − γ )
)

+
m−1∑
k=1

(−1)k−1ζ(2m − 2k + 1)

(2k − 1)!
k−1∑
j=0

(
2k − 1

2j

)
z2k−2j−1(xy)2j ,

where γ is Euler’s constant and ψ is the digamma function, ψ(s) = (	′(s)/	(s)), whose
relation to the harmonic numbers Hn = ∑n

j=1(1/j) is ψ(n) = Hn−1 − γ , with ψ(1) = −γ =
	′(1). Finally,

∞∑
n=1

sin nz cos nxy

n2m
= G2m(x, y, z) +

∞∑
i=m

(−1)iζ(2m − 2i − 1)

(2i + 1)!

×
i∑

j=0

(
2i + 1

2j

)
z2i−2j+1(xy)2j .

Example 1 If we additionally choose m = 1, we obtain

∞∑
n=1

sin nz cos nxy

n2
= z − 1

2

(
z log(z2 − (xy)2) + xy log

z + xy

z − xy

)

+
∞∑
i=1

(−1)iζ(1 − 2i)

(2i + 1)!
i∑

j=0

(
2i + 1

2j

)
z2i−2j+1(xy)2j .

In the same way, we can come to a similar result for any of particular cases if h = sin and
α = 2m. Also, we repeat the same procedure, if h = cos and α = 2m − 1.

Example 2 If we choose the same parameters as above, but take f = cos instead of f = sin
and again m = 1, then h = cos and α = 1, so we first have to find the limiting value

lim
α→1

(
π

(z + xy)α−1 + (z − xy)α−1

4	(α) sin(πα/2)
+ zζ(α)

)
= −1

2
log(z2 − (xy)2),

so that we have

∞∑
n=1

cos nxy cos nz

n
= −1

2
log(z2 − (xy)2) +

∞∑
i=1

(−1)iζ(1 − 2i)

(2i)!
i∑

j=0

(
2i

2j

)
z2i−2j (xy)2j .

However, based on the Fourier expansion of the function −(1/2) log(2 sin(t/2)) for 0 <

t < 2π , there holds −(1/2) log(2 sin(t/2)) = ∑∞
n=1(1/n) cos nt , and we can easily find

∞∑
n=1

cos nxy cos nz

n
= −1

2
log

(
4 sin

z − xy

2
sin

z + xy

2

)
,

where 0 < z ± xy < 2π . Relying on this result, we can conclude

∞∑
i=1

(−1)iζ(1 − 2i)

(2i)!
i∑

j=0

(
2i

2j

)
z2i−2j (xy)2j = log

√
(z − xy)(z + xy)

4 sin((z − xy)/2) sin((z + xy)/2)
,
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Series of trigonometric integral and trigonometric function 757

which is a new summation formula for the series involving Riemann’s zeta function. Further,
if we let xy → z, and make use of the combinatorial identity

∑i
j=0

(2i

2j

) = 22i−1, the above
summation formula will be reduced to

∞∑
i=1

(−4z2)iζ(1 − 2i)

(2i)! = log

(
z

sin z

)
.

3.2 Closed form cases and some applications of equation (8)

If α − d = 2m and F = ζ, η, λ or α − d = 2m − 1 and F = β (m ∈ N), the sum of the series
on the right-hand side of equation (8) consists of a finite number of terms because the functions
ζ, η, λ vanish at even negative integers, and the function β vanishes at odd negative integers.

We shall denote α = 2m + d − ε, where ε =
{

0, F = ζ,η,λ
1, F = β . So, for this choice of parameters,

the formula (8) is brought into a so-called closed form

S
f,g

2m+d−ε =
∞∑

n=1

(s)n−1g((an − b)xy) f ((an − b)z)

(an − b)2m+d−ε

= cπ

2

m∑
j=0

(
2m + d − ε − 1

2j + δ

)
(−1)δ(δ−d)z2m−2j+d−δ−ε−1(xy)2j+δ

(2m + d − ε − 1)! h(mπ + ((d − ε)π)/2)

+
m∑

i=0

(−1)δ(δ−d)+iF (2m − 2i − ε)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δ(xy)2j+δ, (9)

where g = {
sin
cos

}
δ = {

1
0

}
, and independently of that d =

{
0 f =g
1 f �=g , h =

{
cos f =g
sin f �=g . The other

relevant parameters are in table 2. The formula (9) comprises some particular results from
[4], but it is more suitable for immediately obtaining sums of some infinite series as well. For
example, in [2], §5.4.15, entry 8, we find

∞∑
n=1

(−1)n−1

n3
sin nxy cos nz = xy

12

(
π2 − (xy)2 − 3z2

)
.

It holds if |xy ± z| ≤ π , which is the condition for uniform convergence of the left-hand
side series in equation (8) with a = 1, b = 0 and s = −1. After referring to table 2 and the
conditions following equation (9), we obtain the above formula, placing in equation (9):
g = sin, f = cos, m = 1, d = 1, ε = 0, c = 0, F = η, δ = 1, h = sin.

3.3 Some applications

In [5] the solution of the boundary value problem

U ′′
t t = a2U ′′

xx, U(x, 0) = 4hx(L − x)

L2
, U ′

t (x, 0) = 0, 0 ≤ x ≤ L, t ≥ 0,

is given by the infinite series

U(x, t) = 32h

π3

∞∑
n=1

cos((π(2n − 1)at)/L) sin(((2n − 1)πx)/L)

(2n − 1)3
.
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However, using equation (9), where we take m = 1, a = 2, b = 1, s = 1, c = (1/2) and
F = λ, then δ = 0, d = 1 and ε = 0, and denoting (atπ/L) = xy, (xπ/L) = z, we obtain
its solution in closed form

U(x, t) = 4h

L2
(xL − x2 − a2t2), 0 ≤ at

L
≤ 1

2
,

∣∣∣∣at

L

∣∣∣∣ ≤ x

L
≤ 1 −

∣∣∣∣at

L

∣∣∣∣ .
Also (see [5]), the solution of the boundary value problem

U ′′
t t = U ′′

xx + x(x − L), U(x, 0) = U ′
t (x, 0)

= U(0, t) = U(L, t) = 0, 0 ≤ x ≤ L, t ≥ 0,

is

U(x, t) = 8L4

π5

∞∑
n=1

cos(πt (2n − 1)/L) sin(πx(2n − 1)/L)

(2n − 1)5
− x

12
(x3 − 2x2L + L3).

Applying equation (9) with m = 2, using the same parameters as above, but denoting
(tπ/L) = xy and (xπ/L) = z, this solution in closed form becomes

U(x, t) = 1

2
x2t2 − 1

2
Lxt2 + 1

12
t4, 0 ≤ t ≤ L

2
, t ≤ x ≤ L − t.

4. Sum of the series (1)

Now we make use of equation (8), which is, as we have shown, the formula for finding
sum of the right-hand side series of equation (5). We develop in equation (8) the binomials
(z ± xy)α−1 into binomial series, and after a rearrangement we actually obtain the summation
formula of the left-hand side series in equation (5), which is actually the summation formula
for the series (1)

I T ,f
α = cπ(−1)δ(δ−d)

4	(α)h(πα/2)

∞∑
k=1

(
α − 1

2k − δ

)
zα−1−2k+δx2k−δ

∫ 1

0
y2k−δφ(y)dy

+
∞∑
i=0

(−1)δ(δ−d)+iF (α − 2i − d)

(2i + d)!
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δx2j+δ

∫ 1

0
y2j+δφ(y)dy,

(10)

where T (x) =
{

Sφ(x)

Cφ(x)

}
g = {

sin
cos

}
δ = {1

0

}
, h =

{
cos, f =g
sin, f �=g and d =

{
0, f =g
1, f �=g . The other rele-

vant parameters are in table 2.

4.1 Limiting values

If h = sin and α = 2m or h = cos and α = 2m − 1 (m ∈ N), we encounter a singularity in the
first term of equation (10). That is why the limit should be taken. We shall demonstrate it for
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the following choice of parameters: a = 1, b = 0, s = 1, c = 1, F = ζ , g = sin, f = cos,
δ = 1, h = sin and d = 1, and, apart from this, φ(y) = y−1, so that equation (10) becomes

I
Sφ,cos
α =

∞∑
n=1

cos nz

nα

∫ 1

0

sin nxy

y
dy = π

2	(α) sin(πα/2)

∞∑
k=1

(
α − 1

2k − 1

)
zα−2kx2k−1

2k − 1

+
∞∑
i=0

(−1)iζ(α − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
z2i−2j x2j+1

2j + 1
.

Having chosen φ(y) = 1/y, the integral
∫ 1

0 (dy/y) does not converge, but there exists the

integral
∫ 1

0 (sin nxy/y)dy = Si(nx), where Si(z) = ∫ z

0 (sin t/t)dt is the integral sine, which
could not be elementarily calculated, but we know it is bounded by π/2, so Lemma 2 holds.
Irrespective of this, without even trying to find its value, and simply by applying equation
(10), we obtain the above sum. Yet, because of h = sin, there still remains to take the limit for
α = 2m, m ∈ N, i.e.,

lim
α→2m

[
π

2	(α) sin(πα/2)

m∑
k=1

(
α − 1

2k − 1

)
zα−2kx2k−1

2k − 1

+
m−1∑
i=0

(−1)iζ(α − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
z2i−2j x2j+1

2j + 1

⎤
⎦ = G2m(x, z),

and we find

G2m(x, z) =
m−1∑
k=1

(−1)k−1ζ(2m − 2k + 1)

(2k − 1)!
k−1∑
j=0

(
2k − 1

2j + 1

)
z2k−2j−2x2j+1

2j + 1
+ (−1)m

(2m − 1)!

×
( m−1∑

k=1

log z − ψ(2m − 2k + 1) − γ

2k − 1

(
2m − 1

2k − 1

)
x2k−1z2m−2k + x2m−1 log z

2m − 1

)

as well as

lim
α→2m

π

2	(α) sin(πα/2)

∞∑
k=m+1

(
α − 1

2k − 1

)
zα−2kx2k−1

2k − 1

= (−1)m−1z2m−1

(2m)!
∞∑

k=m+1

(x/z)2k−1(2k−1
2m

)
(2k − 1)

,

so that we get

∞∑
n=1

cos nz

n2m

∫ 1

0

sin nxy

y
dy = G2m(x, z) + (−1)m−1z2m−1

(2m)!
∞∑

k=m+1

(x/z)2k−1(2k−1
2m

)
(2k − 1)

+
∞∑

i=m

(−1)iζ(2m − 2i − 1)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
z2i−2j x2j+1

2j + 1
.
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For instance,

∞∑
n=1

cos nz

n4

∫ 1

0

sin nxy

y
dy = −11x3

108
− 19 x z2

18
+

(
x2 z

4
+ 11z3

36

)
arcth

x

z

+ x5

24z2
�

(x2

z2
, 2,

5

2

)
+

(
x3

36
+ x z2

4

)
log

(
1 − x2

z2

)

+
(

x3

18
+ x z2

2

)
log z + x ζ(3)

+
∞∑
i=2

(−1)iζ(3 − 2i)

(2i + 1)!
i∑

j=0

(
2i + 1

2j + 1

)
z2i−2j x2j+1

2j + 1
,

where � is the Lerch transcendent function defined by the series �(z, s, α) = ∑∞
n=0(z

n/(n +
α)s), and |x| < π , |x| < z < 2π − |x| (see table 2).

In the same way, we can come to a similar result for any of particular cases.

4.2 Closed form cases

They ensue if α − d = 2m and F = ζ, η, λ or α − d = 2m − 1 and F = β (m ∈ N). The other
relevant parameters and convergence regions are in table 2. When we choose the function φ in
equation (10), we additionally have to calculate both integrals having in fact a similar structure.

We have already seen that the formula (9) contains all closed form cases for the product
of trigonometric functions. So, using the formula (9) we bring the sum of the series (1) into
closed form:

I
T ,f

2m+d−ε =
∞∑

n=1

(s)n−1T ((an − b)x)

(an − b)2m+d−ε
f ((an − b)z)

= cπ

2

m∑
j=0

(
2m + d − ε − 1

2j + δ

)
(−1)δ(δ−d)z2m−2j+d−δ−ε−1x2j+δ

(2m + d − ε − 1)! h(mπ + ((d − ε)π)/2)

×
∫ 1

0
y2j+δφ(y)dy +

m∑
i=0

(−1)δ(δ−d)+iF (2m − 2i − ε)

(2i + d)!

×
i∑

j=0

(
2i + d

2j + δ

)
z2i−2j+d−δx2j+δ

∫ 1

0
y2j+δφ(y)dy, (11)

where T (x) =
{

Sφ(x)

Cφ(x)

}
g = {

sin
cos

}
δ = {

1
0

}
, and independently of that d =

{
0 f =g
1 f �=g , h ={

cos f =g
sin f �=g . For F = ζ, η, λ there holds ε = 0, but for F = β it is ε = 1. The other relevant

parameters are in table 2.

Example 3 First we take a = 1, b = 0 and s = 1 in equation (11), there follows c = 1
and F = ζ (see table 2), then ε = 0. We choose φ(y) = ctgy. For g = cos the integral∫ 1

0 ctgy cos nxy dy does not exist, so there must be g = sin, which means δ = 1. If we take
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f = cos, then h = sin and d = 1 because f �= g. Let m = 1. For 0 < |x| < π , we have∣∣∣x ∫ 1

0
ctgy sin nxy dy

∣∣∣ =
∣∣∣ ∫ x

0
ctg(t/x) sin nt dt

∣∣∣ �
∫ x

0

∣∣∣ctg(t/x) sin nt

∣∣∣ dt

�
∫ π

0

∣∣∣ctg(t/π) sin nt

∣∣∣ dt.

Also, |tg(t/π)| > (|t |/π) implies |ctg(t/π)| < (π/|t |), for |t | < π . Additionally,
limt→0+ ctg(t/π) sin nt = nπ . The function |ctg(t/π) sin nt | is non-negative, fast oscillatory,
and its maximal value between two consecutive zeros constantly decreases. There follows∫ π

0

∣∣∣ctg
t

π
sin nt

∣∣∣ dt =
∫ 1/n

0

∣∣∣ctg
t

π
sin nt

∣∣∣ dt +
∫ π

1/n

∣∣∣ctg
t

π

∣∣∣ ·
∣∣∣ sin nt

∣∣∣ dt

<

∫ 1/n

0
nπ dt + π

∫ π

1/n

dt

t
= π(1 + log nπ),

which means that
∣∣∣ ∫ 1

0 ctgy sin nxy dy

∣∣∣ < (π(1 + log nπ)/|x|) = Mn(x), and we can easily

see that for α > 0 and each x, 0 < |x| < π , the sequence (Mn(x)/nα) → 0 monotonically,
so that we may apply Lemma 2. Also, we find∫ 1

0
y2j+1ctgy dy =

{
log(2 sin 1) + (1/2)Cl2(2), j = 0

log(2 sin 1) + (3/2)Cl2(2) + (3/2)Cl3(2) − (3/4)Cl4(2), j = 1

where on the right-hand side are Clausen functions defined by (see [1])

Cl2ν(x) =
∞∑

n=1

sin nx

n2ν
, Cl2ν−1(x) =

∞∑
n=1

cos nx

n2ν−1
, ν ∈ N.

Making use of equation (9), we obtain

I
Sφ,cos
1 =

∞∑
n=1

cos nz

n3

∫ 1

0
ctgy sin nxy dy

= x

12
(2π2 − 6πz + 3z2)

(
log(2 sin 1) + 1

2
Cl2(2)

)

+ x3

12

(
log(2 sin 1) + 3

2
Cl2(2) + 3

2
Cl3(2) − 3

4
Cl4(2)

)
,

where |x| < π and |x| < z < 2π − |x| (see table 2).

Example 4 Let a = 1, b = 0 and s = −1 in equation (11), implying c = 0, F = η and ε = 0.
For g = cos there must be δ = 0. Further, we take f = cos, there follows h = cos, d = 0
because f = g. Let m = 2. We choose φ(y) = (1 − y2)−1/2. It is unbounded about 1, but
integrable on (0, 1), thus satisfying conditions of Lemma 1. So applying equation (11), we
find

I
Cφ,cos
4 =

∞∑
n=1

(−1)n−1 cos nz

n4

∫ 1

0

cos nxy√
1 − y2

dy

= 7π5

1440
− π3

96
(x2 + 2z2) + π

32

(
x4

8
+ x2z2 + z4

3

)
,

where |x| < π and |x| − π < z < π − |x| (see table 2).
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Remark 3 We note that this particular result can be obtained in a different way. Namely,
substituting y = cos θ , then multiplying with 2/π , we deal with Bessel functions (see equation
(4)), and the above series becomes

∞∑
n=1

(−1)n−1J0(nx)

n4
cos nz,

which is the series over the product of Bessel and trigonometric function, and its sum can be
obtained by means of the formula on the page 289 in [2].

Example 5 Further, we take a = 2, b = 1 and s = 1 in equation (11). In table 2, we read
c = (1/2) and F = λ. So ε = 0. If we choose g = cos, f = sin, then we have δ = 0, d = 1
and h = sin. Let m = 1 and φ(y) = log(sin y). It is unbounded in the neighborhood of 0,
however

∫ 1
0 log(sin y) dy = − log 2 − (1/2)Cl2(2), and Lemma 1 holds. Applying equation

(11), we obtain

I
Sφ,sin
1 =

∞∑
n=1

sin((2n − 1)z)

(2n − 1)3

∫ 1

0
log(sin y) cos((2n − 1)xy) dy

= π

96

(
6z(z − π)(Cl2(2) + log 4) + x2(6Cl2(2) + 6Cl3(2) − 3Cl4(2) + log 16)

)
,

where |x| < (π/2) and |x| − (π/2) < z < (π/2) − |x| (see table 2).

Example 6 Finally, we take in equation (11): a = 2, b = 1, s = −1, c = 0, F = β, g =
sin, f = sin, d = 0, δ = 1, h = cos, ε = 1 and m = 2, and choose φ(y) = log y. The inte-
gral

∫ 1
0 log y dy converges, φ meets requirements of Lemma 1, and making use of equation

(11), the infinite series is brought in closed form

I
Sφ,sin
5 =

∞∑
n=1

(−1)n−1 sin((2n − 1)z)

(2n − 1)5

∫ 1

0
log y sin((2n − 1)xy) dy

= πxz

32

(
π2

4
− x2

12
− z2

3

)
,

where |x| < (π/2) and |x| − (π/2) < z < (π/2) − |x| (see table 2).
This series can take another form. At first, by integrating by parts, we come to the rela-

tion
∫ 1

0 log y sin((2n − 1)xy) dy = (1/((2n − 1)x))
∫ 1

0 ((cos((2n − 1)xy) − 1/y) dy. After-
wards, we prove

∫ p

0 ((1 − e−t )/t)dt − ∫ ∞
p

(e−t /t) dt = log p + γ . On this basis, we find

Ci(p) + Cin(p) = log p + γ , where Ci(p) = − ∫ ∞
p

(cos t/t)dt is the integral cosine and

Cin(p) = ∫ p

0 ((1 − cos t)/t)dt its related function. Hence, there follows

∫ 1

0
log y sin((2n − 1)xy) dy

= 1

(2n − 1)x

(
Ci((2n − 1)x) − γ − log((2n − 1)x)

)
(x > 0),
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and we obtain the sum of a new series

∞∑
n=1

(−1)n−1 sin((2n − 1)z)

(2n − 1)6x

(
Ci((2n − 1)x) − γ − log((2n − 1)x)

)

= πxz

32

(
π2

4
− x2

12
− z2

3

)
.
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