"Politechnica" University of Timisoara Faculty of Mechanical Engineering

LONG-TERM ROAD TRAFFIC NOISE MEASUREMENTS

AT THE MAIN STREETS OF NIŠ CITY

*Momir Prašćević*¹, *Darko Mihajlov*², *Dragan Cvetković*³, *Aleksandar Gajicki*⁴

¹University of Nis, Faculty of Occupational Safety, Serbia, momir.prascevic@znrfak.ni.ac.rs

² University of Nis, Faculty of Occupational Safety, Serbia, darko.mihajlov@znrfak.ni.ac.rs

³ University of Nis, Faculty of Occupational Safety, Serbia, dragan.cvetkovic@znrfak.ni.ac.rs

⁴ PhD Student, University of Nis, Faculty of Occupational Safety, Serbia, aleksandar@gajicki.com

⁴Institute of Transportation CIP, Nemanjina 6,11000 Beograd, Serbia, gajickia@sicip.co.rs

Abstract – Environmental noise level monitoring in Serbia is performed in several cities and it is pursuant to the Law on Environmental Noise Protection and the accompanying regulations. Although these regulations are in accordance with the national standards, the methodology of noise monitoring varies in different cities. The issues which differ include the following: the number of measurement spots; the number of daily, weekly, and monthly measurement intervals, the duration of measurement intervals, measurement parameters and noise indicators used for noise evaluation. Different measurement procedures are the consequence of diverse city configurations, traffic structure, traffic flow, locations of noise-sensitive objects, as well as diverse contribution of noise sources. The road traffic noise level monitoring in the City of Nis has been organized from 1995 until today based on short-term measurements. The values of noise indicators are calculated based on these short-term measurements. The two newly purchased noise monitoring terminals by the Noise and Vibration Laboratory of the Faculty of Occupational Safety in Nis, enabled the long-term noise measurements. The procedure of permanent and semipermanent road traffic noise measurements at eight locations in the City of Nis has been carried out since January 1, 2014. The results of long-term road noise measurements at the main streets of Niš city will be presented in this paper.

1. INTRODUCTION

Noise pollution caused by road traffic represents a major problem in the environment of most urban areas. However, the problem of road traffic noise has not been approached properly so far, and not enough attention has been paid to it in spite of the fact that it has a great impact on the quality of life of the endangered population. Reasons for such an approach could be found in the definition of noise as a subjective experience of various external events, in its specific character, as well as in the difficulties connected to relating the causes with the effects it has on general health.

The latest data related to the environmental noise pollution [1], collected from the first round of strategic noise mapping of the European Union agglomerations, indicate that 54% of the population in urban areas (56,001,200 inhabitants) is exposed to L_{den} noise levels above 55dB, whereas 15% of the

population (15,754,500 inhabitants) is exposed to L_{den} noise levels above 65dB. In addition to this, additional 33,437,244 inhabitants outside agglomerations live in areas where L_{den} noise levels exceed 55dB and 7,657,083 live in areas where L_{den} noise levels exceed 65dB. Out of the total of 89,438,444 inhabitants exposed to L_{den} noise levels above 55dB, almost 89 million are exposed to the traffic noise [1].

The conditions related to noise pollution in the city of Niš are in many ways similar to conditions in other urban environments. Collecting information on traffic characteristics and noise levels and updating it over a longer period has proven to be crucial to the evaluation and management of environmental noise. Furthermore, measurement and evaluation of traffic noise are important activities which may result in the development of efficient methods for noise control.

Data on traffic noise levels in the city of Nis have been systematically collected and analysed through the project of monitoring the noise level during a number of years starting from 1995 [2-5]. The road traffic noise level monitoring was based on short-term monitoring.

The obtained results give us an insight into the current condition of the noise level at specific locations, allowing us to compare them to previous measurement results and use this to evaluate tendencies related to possible changes in the future.

Two newly purchased noise monitoring terminals in Noise and Vibration Laboratory enable the long-term noise measurements.

The procedure of permanent and semi-permanent road traffic noise monitoring, starting from January 1, 2014 according to guidelines given in standards SRPS ISO 1996-1 [6] and SRPS ISO 1996-2 [7] and IMAGINE document [8] has been carried out eight locations.

The first results of one-year long-term measuremts were published in some papers [9-11]. Some od the results are publicaly available at web site <u>http://www.znrfak.ni.ac.rs/BVLab-KMB/KMB-Home.html</u>.

The results avialaibel until time of publication of this paper will be presented in the paper.

2. MEASUREMENT LOCATIONS FOR LONG-TERM MEASUREMENTS

The procedure of long-term measuremetas is realized as semipermanent noise monitoring with different monitoring time. Semi-permanent monitoring, ranging from a three months to two years is more cost-effective monitoring than permanent noise monitoring that includes 24 hours a day, 365 days a year noise measurements using a permanently installed noise monitoring terminal at one location.

Brüel&Kjær's Environmental Noise Management System [9-11] was used for long-term noise monitoring. This system consists of Environmental Noise Management System Software, Type 7843, two Noise Monitoring Terminals (NMT), Type 3639B and one Weather Station, Type WXT520.

Both NMTs are equipped with GPRS router and GPS receiver. One of the terminals (marked as NMT-1) is

equipped with weather station, which enable measurement of the following meteorological parameters: temperature, humidity, air pressure, wind velocity, wind direction and rainfall.

The procedure of long-term measurements is realized at eight measurements locations. There are the different methods for the selection measurement locations [12]. The choice of measurement locations was done in accordance with population and residential location, characteristics of land-uses and road functions and structure. The distribution of the measurements locations is given in Fig. 1.

The mark and basic information about measurement locations are given below.

Network of NMT locations is shown in Fig. 1

Fig. 1 Network of NMT locations

NMT1.1: Intersection of Kneginje Ljubice street and	Altitude: 197 m				
Generala Milojka Lešjanina street	Microphone height: 4 m				
Latitude: 43° 19' 12.8"	Mounting type: the lighting pole				
Longitude: 21° 53' 27.6"	Monitoring time: in progress (01.01.2016 -)				
Altitude: 195.3 m	Plan of monitoring time: one year				
Microphone height: 4 m	NMT2.1: Primary school "Vožd Karađorđe" near Vožda				
Mounting type: the lighting pole	Karađorđa street				
Monitoring time: two years (01.01.2014 - 31.12.2015)	Latitude: 43° 19' 13"				
NMT1.2: Intersection of Kralja Stefana Prvovečanog street	Longitude: 21° 54' 13.2"				
and Vožda Karađorđa street	Altitude: 196.8				
Latitude: 43° 19' 14"	Microphone height: 4 m				
Longitude: 21° 54' 01"	Mounting type: the lighting pole				
	Monitoring time: six months (01.01.2014 - 30.06.2014)				

NMT2.2: Faculty of Medicine near Dr Zorana Đinđića street Latitude: 43° 19' 12" Longitude: 21° 53' 27" Altitude: 197.1 Microphone height: 4 m Mounting type: the separate pole Monitoring time: nine months (01.07.2014 - 31.03.2015)

NMT2.3: Residential building near Knjaževačka street Latitude: 43° 19' 46" Longitude: 21° 55' 58" Altitude: 212 Microphone height: 4 m Mounting type: facade Monitoring time: three months (01.04.2015 - 30.06.2015) NMT2.4: Commercial building near railway Niš-Sofia-Niš Latitude: 43° 18' 46" Longitude: 21° 53' 36" Altitude: 205

Microphone height: 4 m Mounting type: facade

Monitoring time: six months (01.07.2015 -31.12.2015)

NMT2.5: Day nursery "Bamby" near Bulevar Nemanjića street Latitude: 43° 19' 26" Longitude: 21° 54' 31" Altitude: 196 Microphone height: 4 m Mounting type: the lighting pole Monitoring time: six months (01.01.2016 -30.06.2016) NMT2.6: Municipality building near 12. februara street Latitude: 42° 20' 2.7"

Latitude: 43° 20' 2.7" Longitude: 21° 52' 51.9" Altitude: 206 Microphone height: 4 m Mounting type: the lighting pole Monitoring time: in progress (01.07.2016 –) Plan of monitoring time: six months

3. RESULTS OF ROAD TRAFFIC NOISE MONITORING

Monthly values of noise indicators for all locations as well as the results of statistical analysis (energetic mean value, standard deviation and maximum deviation of individual values from the energetic mean value) are shown in following tables.

The main values of noise indicators for all locations are shown in Fig. 2.

Fig. 1 The values of $L_{day}/L_{evening}/L_{night}/L_{den}$ in dB

 Table 1 The monthly noise indicators in dB for NMT-1.1

	$L_{\rm d}$	L _e	L _n	L _{den}	L _{eq,total}
January 2014	73.1	71.9	67.9	75.9	71.7
February 2014	73.1	71.9	67.7	75.8	71.7
March 2014	73.3	72.1	67.9	76.0	71.9
April 2014	73.4	72.4	68.3	76.3	72.0
May 2014	73.3	72.3	68.1	76.2	71.9
June 2014	73.0	72.0	68.1	76.0	71.7
July 2014	72.8	72.2	67.8	75.8	71.5
August 2014	72.7	71.9	68.2	76.0	71.5
September 2014	73.1	72.0	67.9	75.9	71.7
October 2014	73.2	72.1	68.0	76.0	71.9
November 2014	73.0	72.0	67.6	75.7	71.6
December 2014	73.3	72.4	68.2	76.2	72.0
mean value	73.1	72.1	68.0	76.0	71.8
σ	0.20	0.17	0.22	0.17	0.18
max. deviation	0.4	0.3	0.4	0.3	0.3

 Table 2 The monthly noise indicators in dB for NMT-1.1

	L _d	L _e	L _n	L _{den}	L _{eq,total}
January 2015	72.8	71.4	68.5	76.0	71.5
February 2015	72.8	71.8	67.4	75.5	71.4
March 2015	73.2	72.1	67.8	75.9	71.8
April 2015	72.7	71.6	67.3	75.4	71.3
May 2015	72.5	71.4	67.3	75.3	71.2
June 2015	72.5	71.7	68.0	75.8	71.3
July 2015	72.1	71.3	67.5	75.3	70.9
August 2015	72.1	71.3	67.7	75.4	70.9
September 2015	72.6	71.5	67.4	75.4	71.3
October 2015	73.1	72.0	67.8	75.9	71.7
November 2015	72.9	71.6	67.7	75.7	71.5
December 2015	73.0	72.0	69.3	76.7	71.9
mean value	72.7	71.6	67.8	75.7	71.4
σ	0.35	0.28	0.58	0.41	0.31
max. deviation	0.6	0.4	1.5	1.0	0.5

Table 3 The monthly	, noise	indicators	in	dB for	NMT-1.2
---------------------	---------	------------	----	--------	---------

	$L_{\rm d}$	L _e	L _n	L _{den}	L _{eq,total}
January 2016	69.4	69.3	65.8	73.4	68.5
February 2016	69.2	68.5	64.8	72.6	68.1
March 2016	69.4	69.0	65.0	72.8	68.3
April 2016	69.0	68.7	64.7	72.5	67.9
May 2016	69.2	69.4	65.6	73.2	68.3
June 2016	69.0	69.1	64.9	72.7	68.0
July 2016	68.8	68.7	65.4	72.9	67.9
August 2016	68.8	69.1	67.4	74.2	68.5
September 2016	69.5	70.1	65.5	73.3	68.6
mean value	69.1	69.1	65.5	73.1	68.2
σ	0.26	0.48	0.82	0.53	0.27
max. deviation	0.4	1.0	1.9	1.1	0.4

 Table 4 The monthly noise indicators in dB for NMT-2.1

	$L_{\rm d}$	L _e	L _n	L _{den}	L _{eq,total}
January 2014	70.3	69.9	67.4	74.7	69.4
February 2014	70.2	69.7	66.7	74.1	69.2
March 2014	70.6	69.8	66.7	74.2	69.5
April 2014	70.5	70.2	67.2	74.6	69.6
May 2014	70.6	70.3	66.8	74.4	69.6
June 2014	70.1	69.7	66.6	74.0	69.1
mean value	70.4	69.9	66.9	74.3	69.4
σ	0.19	0.26	0.35	0.26	0.18
max. deviation	0.3	0.4	0.5	0.4	0.3

 Table 5 The monthly noise indicators in dB for NMT-2.2

	$L_{\rm d}$	L _e	L _n	L _{den}	L _{eq,total}
July 2014	63.5	63.0	57.6	66.1	62.2
August 2014	62.2	62.0	57.5	65.5	61.1
September 2014	63.1	62.5	57.9	66.0	61.8
October 2014	63.4	62.8	57.9	66.2	62.1
November 2014	63.3	62.8	57.9	66.2	62.1
December 2014	63.7	63.0	58.2	66.5	62.4
January 2015	62.8	61.7	57.4	65.5	61.4
February 2015	63.1	62.7	57.9	66.1	61.8
March 2015	63.6	63.0	58.3	66.5	62.3
mean value	63.2	62.6	57.8	66.1	61.9
σ	0.46	0.47	0.30	0.36	0.43
max. deviation	1.0	1.0	0.4	0.6	0.8

Fable 6 The monthly nois	e indicators in	dB for NMT-2.3
---------------------------------	-----------------	----------------

	$L_{\rm d}$	L _e	L _n	L _{den}	L _{eq,total}
April 2015	62.6	61.9	57.2	65.4	61.2
May 2015	62.0	61.3	56.8	64.9	60.7
June 2015	62.1	61.5	56.9	65.0	60.8
mean value	62.2	61.6	57.0	65.1	60.9
σ	0.32	0.31	0.21	0.26	0.26
max. deviation	0.4	0.3	0.2	0.3	0.3

 Table 7 The monthly noise indicators in dB for NMT-2.4

	L _d	L _e	L _n	L _{den}	L _{eq,total}
July 2015	62.9	62.2	60.4	67.4	62.1
August 2015	62.1	61.4	59.8	66.8	61.3
September 2015	63.0	61.8	58.8	66.4	61.8
October 2015	63.7	61.9	59.2	66.8	62.3
November 2015	63.6	61.2	59.8	67.0	62.3
December 2015	63.8	62.4	60.6	67.7	62.7
mean value	63.2	61.8	59.8	67.0	62.1
σ	0.65	0.46	0.69	0.47	0.48
max. deviation	1.1	0.6	1.0	0.7	0.8

	$L_{\rm d}$	L _e	L _n	L _{den}	Leq,total
January 2016	65.5	64.3	59.8	68.8	64.2
February 2016	65.5	64.8	59.3	68.2	64.4
March 2016	65.7	64.7	59.4	68.0	64.2
April 2016	65.0	64.5	59.4	67.6	63.6
May 2016	65.2	65.1	59.6	68.0	64.0
June 2016	64.6	64.9	59.4	67.8	63.5
mean value	65.3	64.7	59.5	68.1	64.0
σ	0.40	0.29	0.18	0.41	0.36
max. deviation	0.7	0.4	0.3	0.7	0.5

Table 8 The monthly noise indicators in dB for NMT-2.5

Tabla 0	The	monthly	nnica	indicators	in	dR for	NMT 2.6
Table 9	1 ne	moniniy	noise	inalcalors	ın	ав јог	11/11/1-2.0

	$L_{\rm d}$	L _e	L _n	L _{den}	L _{eq,total}
July 2016	67.9	67.5	63.9	71.5	66.9
August 2016	68.2	67.9	64.1	71.8	67.1
September 2016	68.7	69.6	64.0	72.3	67.8
mean value	68.3	68.3	64.0	71.9	67.3
σ	0.40	1.12	0.10	0.40	0.47
max. deviation	0.4	1.3	0.1	0.4	0.5

The monthly values of noise indicators for all locations are slightly different from the energetic mean values of noise indicators for observation interval except for the case of occasional occurrences such as New Year's celebration (NMT1.1. – December 2015), celebration of Olympic champion in water polo (NMT1.2 – August 2016).

4. IN PLACE OF CONCLUSION – NEW APPROACH FOR ENVIRONMENTAL NOISE ASSESSMENT

It currently remains difficult for people to understand the environmental noise data due to various noise indicators that are expressed in decibel unit which is logarithmic in nature, and usually complicated to explain and relatively far-removed from perception of people. Also, the noise indicators very often are expressed in dB(A), which further complicates the understanding of noise indicators values.

Two French organizations specialized for management and organization of urban noise observatories in France, have worked on a proposal for a new index closer to the perception of the people [13, 14]. They suggested a new environmental noise index called Harmonica (HARMOnised Noise Information for Citizens and Authorities) index. The Harmonica index is based on measurement data obtained by noise monitoring and take into account both the overall environmental noise load and noise peaks from sudden noise events.

The Harmonica index is calculated based on one-hour time sample of A-weighted, equivalent continuous sound level sampled with 1 second interval, and it takes into account the two major components that affect the sound environment.

The Harmonica index is an adimensional index based on a scale of 0 to 10. The Harmonica index is graphically represented as a triangle (BGN component) on top of a rectangle (EVT component). Three colors (green, orange and red) are used for color representation of the Harmonica index. The color scale is shown in Table 10.

Table 10. The color scale for Harmonica index

Color	Day	Night	Harmonica
Color	(from 6 am to 10 pm)	(from 10 pm to 6 am)	index score
green	between 0 and 4	between 0 and 3	Quiet
orange	between 4 and 8	between 3 and 7	Noisy
red	over 8	over 7	Very noisy

The detailed information about Harmonica index, calculation procedure and the results of environmental noise assessment by Harmonica index in the city of Nis are given in papers [15, 16].

Two example of Harmonica index calculation are given in Fig. 3 and Fig.4.

Fig. 3. The averaged hourly values of Harmonica indices for NMT-1.1 (April 20, 2015- April 26, 2015)

Fig. 4. The averaged hourly values of Harmonica indices for NMT-2.3 (April 20, 2015- April 26, 2015)

ACKNOWLEDGEMENT

This research is part of the project "Development of methodology and means for noise protection from urban areas" (No. TR-037020) and "Improvement of the monitoring system and the assessment of a long-term population exposure to pollutant substances in the environment using neural networks" (No. III-43014. The authors gratefully acknowledge the financial support of the Serbian Ministry for Education, Science and Technological Development for this work.

REFERENCES

- [1] P. Vos, G. Licitra, Noise maps in the European Union: An overview. In G. Licitra (Ed.), Noise mapping in EU: Models and Procedures, 1st edn., CRC Press, USA, 2012.
- [2] M. Prascević, "Systematic Environmental Noise Measurement of Nis", Proc. of XV Yugoslav and III International Conference "Noise and Vibration in Living and Working Environment", Niš, Serbia, pp. 35-38, 1995
- [3] D. Cvetković, A. Deljanin, M. Prascevic, "Community noise levels survey of Nis", Proc. of the International Congress on Noise Control Engineering "INTER NOISE", Budampest, Hungary, pp. 815-818. 1997
- [4] D. Mihajlov, M. Prascevic, D. Cvetkovic, "Results of the monitoring and assessment of the state of noise level in Nis in 2007", Proc. of 21st Conference with International Participation "Noise and Vibration", Nis, Serbia, ID: 21-23, 2008
- [5] D. Mihajlov, M. Prascevic, D. Cvetkovic, "An analysis of the environmental noise levels on the territory of the city of Nis", Proc. of 23rd National and 4th International Conference "Noise and Vibration", Nis, Serbia, pp. 49–58, 2012
- [6] SRPS ISO 1996-1: 2010, Acoustics Description, measurement and assessment of environmental noise - Part 1: Basic quantities and assessment procedures.
- [7] SRPS ISO 1996-2: 2010, Acoustics Description, measurement and assessment of environmental noise -Part 2: Determination of environmental noise levels.

- [8] IMAGINE Project, Deliverable 5, "Determination of L_{den} and L_{night} using measurements", 2011. [Online]. Available: <u>http://www.certificacioacustica.cat/Documents/Articles/D5_IM</u> <u>A32TR-040510-SP08.pdf</u>
- [9] M. Praščević, D. Mihajlov, D. Cvetković, "Permanent and semi-permanent noise monitoring – first results in the city of Nis", in Proc. of 24th International Conference "Noise and Vibration", ISBN: 978-86-6093-062-2, pp. 33-40, Niš, 2014
- [10] M. Praščević, D. Mihajlov, "Noise indicators determination based on long-term measurements", Facta universitatis, Series: Working and Living Environmental Protection, Vol. 11, No. 1, pp. 1-11, 2014
- [11] D. Mihajlov, M. Praščević, "Permanent and Semi-permanent Road Traffic Noise Monitoring in the City of Nis (Serbia)", Journal of low frequency noise, vibration and active control, Vol. 34, No. 3, ISSN: 0263-0923, University of Sheffield, pp. 251-268, http://dx.doi.org/10.1260/0263-0923.34.3.251, 2015
- [12] H. Doygum, D. K. Gurun, Analysing and mapping spatial and temporal dynamics of urban traffic noise pollution: a case study in Kahramanmaraş, Turkey. Environmental Monitoring and Assessment, 142, 65-72. 2008
- [13] C. Mietlicki, F. Mietlicki, C. Riberio, P. Gaudibert, "The HARMONICA project, new tools to assess environmental noise and better inform to the public", *Proceedings of Forum Acousticum*, Krakow, Poland, 2014
- [14] F.Mietlicki, P. Gaudibert, "The HARMONICA project (HARMOnized In-formation for Citizens and Authorities)", *Proceedings of Inter-noise*, New York, USA, 2012
- [15] M. Praščević, D. Mihajlov, D. Cvetković, "Assessment of environmental noise by Harmonica index – case study: the city of Niš", Applied Mechanics and Materials, Vol. 801, Trans tech publications Inc., ISBN 13: 978-3-03835-628-8, pp 51-59, http://dx.doi.org/10.4028/www.scientific.net/AMM.801.51, 2015
- [16] M. Praščević, D. Mihajlov, D. Cvetković, "The Correlation between Harmonica Indices and Noise Indicators", ANALELE UNIVERSITĂȚII "EFTIMIE MURGU" REȘIȚA ANUL XXII, NR. 2, ISSN 1453 – 7397, University of Resita, pp 306-317, http://anale-ing.uem.ro/2015/230.pdf, 2015

25th INTERNATINAL CONFERENCE

NOISE AND VIBRATION

PROCEEDING OF PAPERS

Tara, October 27-29, 2016.

Publisher:	University of Niš, Faculty of Occupational Safety
For the publisher:	Prof. Momir Praščević, Ph. D.
	dean

Editors of proceeding of papers:

Prof. Dragan Cvetković, Ph. D. Prof. Vasile Marinca, Ph. D. Prof. Nicolae Herisanu, Ph. D. Prof. Momir Praščević, Ph. D. Ass. Prof. Darko Mihajlov, Ph. D.

Graphic design and prepress:

Ass. Darko Mihajlov, Ph. D. Rodoljub Avramović

Printout: University of Niš, Faculty of Occupational Safety **No. of copies:** 150 (CD PDF)

ISBN: 978-86-6093-076-9

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

534.83(082)(0.034.2) 62-752(082)(0.034.2) 614.872(082)(0.034.2) 628.517(082)(0.034.2)

INTERNATIONAL Conference Noise and Vibration (25; 2016; Tara)

Proceeding of Papers [Elektronski izvor] / 25th International Conference Noise and Vibration, Tara, October 27-29, 2016. ; [organizer University of Niš, Faculty of Occupational Safety of Niš, Department of Preventive Engineering [and] "Politechnica" University of Timisoara, Faculty of Mechanical Engineering, Department of Mechanical Engineering ; editors Dragan Cvetković ... et al.]. - Niš : University, Faculty of Occupational Safety, 2017 (Niš : University, Faculty of Occupational Safety). - 1 elektronski optički disk (CD-ROM) : ilustr. ; 12 cm

Sistemski zahtevi: Nisu navedeni. - Nasl. sa naslovnog ekrana. - Tekst štampan dvostubačno. - Tiraž 150. - Bibliografija uz svaki rad.

ISBN 978-86-6093-076-9 а) Бука - Зборници b) Вибрације - Зборници COBISS.SR-ID 229503500

ORGANIZER

University of Niš Faculty of Occupational Safety of Niš Department of Preventive Engineering Noise and Vibration Laboratory www.znrfak.ni.ac.rs

"Politechnica" University of Timisoara Faculty of Mechanical Engineering Department of Mechanical Engineering Noise and Vibration Laboratory www. http://www.mec.upt.ro

AUSPICE

Ministry of Education, Science and Technological Development Republic Serbia www.mpn.gov.rs

GENERAL SPONSOR

www. bksv.com

CONFERENCE REVIEW

1 st Yugoslav Conference	Belgrade	1978
2 nd Yugoslav Conference	Belgrade	1979
3 rd Yugoslav Conference	Belgrade	1980
4 th Yugoslav Conference	Belgrade	1981
5 th Yugoslav Conference	Belgrade	1982
6 th Yugoslav Conference	Belgrade	1983
7 th Yugoslav Conference	Belgrade	1984
8 th Yugoslav Conference	Belgrade	1985
9 th Yugoslav Conference	Belgrade	1986
10 th Yugoslav Conference	Belgrade	1987
11 th Yugoslav Conference & 1 st International Conference	Belgrade	1988
12 th Yugoslav Conference	Belgrade	1989
13 th Yugoslav Conference	Niš	1991
14 th Yugoslav Conference & 2 nd International Conference	Niš	1993
15 th Yugoslav Conference & 3 rd International Conference	Niš	1995
16 th Yugoslav Conference with international participation	Niš	1998
17 th Yugoslav Conference with international participation	Niš	2000
18 th Yugoslav Conference with international participation	Niš	2002
19 th Conference with international participation	Niš	2004
20 th Conference with international participation	Tara	2006
21 st Conference with international participation	Tara	2008
22 nd Conference with international participation	Niš	2010
23 rd Conference and 4 th International Conference	Niš	2012
24 th International Conference	Niš	2014
25 th International Conference	Tara	2016

PROGRAM COMMITTEE

Prof. Dragan Cvetković, Ph. D., University of Niš, Faculty of Occupational Safety – chairman

Prof. Vasile Marinca, Ph. D., "Politehnica" University of Timișoara, Romania – co-chairman

Prof. Petar Pravica, Ph. D., University of Belgrade, Faculty of Electrical Engineering

> **Prof. Giangiacomo Minak, Ph. D.,** University of Bologna, Italy

Prof. Marek Grzybowski, Ph. D., Gdynia Maritime University, Poland

Prof. Holger Stark, Ph. D., Heinrich Heine University Düsseldorf, Germany

> **Prof. Miloš Manić, Ph. D.,** University of Idaho, USA

Prof. Nicolae Herisanu, Ph. D., "Politehnica" University of Timişoara, Romania

Prof. Vasile Bacria, Ph. D., "Politehnica" University of Timişoara, Romania

Prof. Liviu Bereteu, Ph. D., "Politehnica" University of Timişoara, Romania

Prof. Gheorghe Draganescu, Ph. D., "Politehnica" University of Timişoara, Romania

Prof. Tihomir Trifunov, Ph. D., National Military University "Vassil Levski" of Veliko Turnovo, Bulgaria

> **Prof. Koleta Zafirova, Ph. D.,** Faculty of Technology and Metallurgy, Skopje, Macedonia

Prof. Nikola Holeček, Ph. D., Environmental Protection College, Velenje, Slovenia

Prof. Valentina Golubović-Bugarski, Ph. D., Faculty of Mechanical Engineering, Banja Luka, Rep. of Srpska

Prof. Pero Raos, Ph. D., Faculty of Mechanical Engineering, Slavonski brod, Croatia

Zoran Stojanović, Ph. D., Vinča Institute for nuclear sciences, University of Belgrade

> Ratko Uzunović, Ph. D., VIBEX system

Prof. Ljiljana Živković , Ph. D., University of Niš, Faculty of Occupational Safety

Prof. Nenad Živković, Ph. D., University of Niš, Faculty of Occupational Safety

Prof. Predrag Kozić, Ph. D., University of Niš, Faculty of Mechanical Engineering

Prof. Nikola Lilić, Ph. D., University of Belgrade, Faculty of Minig and Geology **Prof. Slobodan Gajin, Ph. D.,** University of Novi Sad, Faculty of Civil Engineering in Subotica

Prof. Zoran Perić, Ph. D., University of Niš, Faculty of Electronic Engineering

Prof. Zoran Petrović, Ph. D., University of Kragujevac, Faculty of Civil and mechanical Engineering in Kraljevo

Prof. Zlatan Šoškić, Ph. D., University of Kragujevac, Faculty of Civil and mechanical Engineering in Kraljevo

> **Prof. Dejan Ćirić, Ph. D.,** University of Niš, Faculty of Electronic Engineering

Prof. Aleksandar Cvjetić, Ph. D., University of Belgrade, Faculty of Minig and Geology

ORGANISITION COMMITTEE

Prof. Momir Praščević, Ph. D. University of Niš, Faculty of Occupational Safety – chairman

Prof. Nicolae Herisanu, Ph. D. - co-chairman "Politehnica" University of Timișoara, Romania – co-chairman

> **Prof. Vasile Marinca, Ph. D.** "Politehnica" University of Timişoara, Romania

Prof. Dragica Milenković, Ph. D. University of Niš, Faculty of Mechanical Engineering

Prof. Jasmina Radosavljević, Ph. D. University of Niš, Faculty of Occupational

Prof. Miomir Raos, Ph. D. University of Niš, Faculty of Occupational Safety

Ass. Branko Radičević, Ph. D. University of Kragujevac, Faculty of Civil and mechanical Engineering in Kraljevo

Prof. Nebojša Bogojević, Ph. D. University of Kragujevac, Faculty of Civil and mechanical Engineering in Kraljevo

> **Ass. Darko Mihajlov, Ph. D.** University of Niš, Faculty of Occupational Safety

<u>1st SESSION - NOISE</u>	
Livija Cvetićanin, Dragan Cvetićanin Theory of acoustic metamaterials: An overwiev	11-16
Nikola Holeček, Dejan Dren Free field array method as a tool for identification of crack noises in household refrigerators	17-22
Slobodan Todosijević, Dejan Ćirić, Branko Radičević, Zlatan Šoškić Experimental characterization of a photo-acoustic measurement system	23-26
Snežana Jovanović, Zoran Milenković, Nenad Gordić Comparison of efficiency silencers	27-33
Momir Praščević, Darko Mihajlov, Dragan Cvetković, Aleksandar Gajicki Long-term road traffic noise measurements at the main streets of Niš city	35-40
Emil Živadinović, Sanja Bijelović, Nataša Dragić, Siniša Milošević, Živojin Lalović Environmental noise in city streets and car-free zones in Novi Sad	41-45
Emir Ganić, Miroslav Radojević, Obrad Babić Influence of aircraft noise on quiet areas	47-53
Ana Vukadinović, Jasmina Radosavljević, Amelija Djordjević, Milan Protić, Dejan Vasović Evaluation of noise pollution by strategic noise maps and urban planning	55-59
Mihaela Picu Experimental research to assess the perception of citizens on noise pollution, in Braila, Romania	61-67
Nicolae Herisanu, Darko Mihajlov, Vasile Bacria Reducing the noise from an air conditioning installation: A case study	69-73
Aleksandar Gajicki, Momir Praščević An example of noise abatement measures for railway line	75-80
Jelena Tomić, Nebojša Bogojević, Marina Pljakić Measurements of noise of diesel motor train of series ŽS 711	81-85
Jovan Miočinović, Biljana Beljić Durković Assessment and evaluation of noise at workplace according to the new regulation and applicable standards comparing to the old regulation	87-96
Ivana Joksimović, Mladenka Vujošević Control of noise level in the Kindergarten "Ljubica Popović" Podgorica	97-99
Borko Bajić, Mladenka Vujošević Noise level monitoring in hospital zone	101-103
Jelica Tošić Adjectival Compounds in Environmental Noise Discourse	105-107

2 nd SESSION - VIBRATION	
Nicolae Herisanu, Vasile Marinca The optimal homotopy asymptotic method for a system with linear and nonlinear spring in series	111-114
Vasile Marinca, Nicolae Herisanu Vibration of the carbon nanotube with fluid flow	115-119
Miomir Jovanović, Goran Radoičić Modeling effect of live human excitation to the mechanical system using the discrete-time Fourier transformation	121-125
Slavko Zdravković, Tomislav Igić, Dragana Turnić, Sandra Šaković Eigenfrequencies of water towers	127-130
Slavko Zdravković, Dragan Zlatkov, Marija Spasojević Šurdilović, Biljana Mladenović Determination of the precise equipment foundation displacment caused by seismic excitation vibrations	131-134
Valentina Golubović-Bugarski, Mladen Todić, Biljana Vranješ Strategy for effective measurement of hand transmitted vibration at the workplace	135-141
Maruta Remus Stefan, Nagy Ramona, Menyhardt Karoly Engineering of in-house dynamic load cell	143-146
Rajko Radonjić, Danijela Miloradović, Dragoljub Radonjić, Aleksandra Janković <i>Modeling and identification of vehicle vibration</i>	147-150
Stevan Vulicić, Dejan Spasić, Marko Vulović, Ljilja Radovanović, Živoslav Adamović Vibrodiagnostics automated systems	151-153
Dejan Spasić, Stevan Vulicić, Marko Vulović, Ljilja Radovanović, Živoslav Adamović Vibrations as parameter sheet of machine	155-158
Zvonko Rakarić, Ivana Kovačić, Miodrag Zuković On the dynamic behaviour of a folded pendulum mechanism	159-164
Jovan Pavlović, Dragoslav Janošević, Vesna Jovanović, Predrag Milić Hydrostatic systems for vibration damping in the movement of mobile machinery	165-168
Slobodan Ranković, Todor Vacev, Srđan Živković, Radovan Cvetković Vibrations of composite bridge structures exposed to action of moving load from vehicles - case study	169-172
Boban Cvetanović, Miljan Cvetković, Dalibor Đorđević The evaluation of tractor seat cushion materials using the analytic hierarchy process	173-176
Žarko Janković, Milan Mišić, Miljan Cvetković Maintenance of work equipment based on vibration diagnosis for the purpose of employees' safety	177-182