International Conference on Hydrogen Atom Transfer

iCHAT 2014

Villa Mondragone (Monteporzio Catone) Rome - Italy

June 22-26, 2014

ORGANIZING COMMITTEE

Massimo Bietti (Chairman) Università "Tor Vergata", Rome, Italy
Gino A. Di Labio (Chairman) National Institute for Nanotechnology and
University of British Columbia, Canada
Osvaldo Lanzalunga Università "La Sapienza", Rome, Italy
Michela Salamone Università "Tor Vergata", Rome, Italy

http://iCHAT2014.uniroma2.it

Antioxidant Activity of Some Vanillic Mannich Bases

<u>Vladimir P. Petrović</u>, Dušica Simijonović, Zorica D. Petrović, and Milena Lukić

Faculty of Science, University of Kragujevac, Kragujevac, Serbia

vladachem@kg.ac.rs

The antioxidant activity of newly synthesized Mannich base 2-[1-(*N*-phenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (**MB-H**) and 2-[1-(*N*-4-chlorophenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (**MB-Cl**) was determined by DPPH assay (Figure 1, Table 1). Both investigated compounds interact well with DPPH, and exhibit high activity, slightly lower than the reference compound NDGA. This interaction can be attributed to the common behaviour of phenolic compounds.

Figure 1. The optimized structures of MB-Cl and MB-H

Table 1. Interaction of the examined and reference compounds with the stable free radical DPPH

	МВ-Н		MB-Cl		NDGA			
concentration (µM)	inhibition (%)							
	20 min	60 min	20 min	60 min	20 min	60 min		
100	89.8	91.6	90.9	92.1	96.2	96.2		
50	83.6	89.6	87.9	91.7	94.8	95.9		
25	72.3	84.9	78.7	86.9	94.1	95.4		
IC ₅₀ (μM)	14.5		11.3					

In order to determine the most probable radical scavenging mechanism Density Functional Theory (m052x/6-311+g(d,p)) was applied (Table 2).² It was established that the most probable mechanism is Hydrogen Atom Transfer.

Table 2. Parameters for free radical scavenging activity of the Mannich bases (kJ/mol)

	HAT	SPLET		SET-PT		
	BDE	PA	ETE	IP	PDE	
MB-H	339.6	144.3	195.2	367.8	-28.4	
MB-Cl	338.8	144.6	194.0	315.4	23.2	

- (1) Kontogiorgis C., Hadjipavlou-Litina D., J. Enzym. Inhib. Med. Chem. 2003, 18, 63.
- (2) Zhao Y., Schultz N. E., Truhlar D. G., J. Chem. Theory Comput. 2006, 2, 364.