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Abstract The antioxidant properties of some phenolic Schiff
bases in the presence of different reactive particles such as
•OH, •OOH, (CH2=CH−O−O•), and -•O2 were investigated.
The thermodynamic values, ΔHBDE, ΔHIP, and ΔHPA, were
used for this purpose. Three possible mechanisms for transfer
of hydrogen atom, concerted proton−electron transfer
(CPET), single electron transfer followed by proton transfer
(SET-PT), and sequential proton loss electron transfer
(SPLET) were considered. These mechanisms were tested in
solvents of different polarity. On the basis of the obtained
results it was shown that SET-PT antioxidant mechanism can
be the dominant mechanism when Schiff bases react with
radical cation, while SPLET and CPET are competitive mech-
anisms for radical scavenging of hydroxy radical in all sol-
vents under investigation. Examined Schiff bases react with
the peroxy radicals via SPLET mechanism in polar and non-
polar solvents. The superoxide radical anion reacts with these
Schiff bases very slowly.

Keywords Antioxidant mechanisms . Antioxidant
properties . Density functional theory . Phenolic Schiff bases

Introduction

Schiff bases, as azomethines, are an important class of
organic compounds [1–3]. This class of compounds has
found application in the broad field of organic chemis-
try [4–6]. The azomethine group plays an important role
in nature, since it is present in various natural and syn-
thetic products. They are responsible for a broad range
of biological activities, [7–9] including antibacterial, an-
tifungal, antimalarial, anti-inflammatory, antiviral, anti-
proliferative, and antipyretic properties [3, 10]. If these
compounds contain phenolic OH group (one or more),
they can show radical scavenging activity [11].

Scavenging activity of phenolic compounds, Schiff bases
(SBO-H) in this case, is based on their ability to transfer H
atom (from OH group) to other free radicals (RO•). Thus the
obtained phenolic radicals should be more stable and less
reactive than the previous ones.

There are at least three mechanisms [12–14] for this
transfer of hydrogen atom: concerted proton−electron
transfer (CPET), single electron transfer followed by
proton transfer (SET-PT), and sequential proton loss
electron transfer (SPLET). The net result of all three
mechanisms is the same [15]. They are competitive,
implying that the nature of free radicals and polarity
of solvents, as well as other reaction conditions, have
s ign i f i can t impac t on the reac t ion pa thways .
Determination of the reaction enthalpies plays a very
important role in understanding of these processes.
Namely, if a reaction is exothermic, it means that the
newly formed radical or intermediate is more stable in
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comparison to the starting radical, and implies that the
corresponding reaction path may be favorable. In the
case that a reaction is endothermic, one may suppose
that this reaction path is not favored [16]. Certainly, to
fully understand antioxidant mechanisms it is desirable
to examine reaction kinetics too. In the present work the
reaction enthalpies were calculated in two ways: in the
absence (Electronic supplementary material), and in the
presence of a harmful free radical RO•. Since the latter
results describe antioxidant processes more realistically,
they are presented in the main text.

In the CPET mechanism:

SBO−Hþ RO•→SBO• þ ROH ð1Þ

ΔHBDE can be calculated as follows:

ΔHBDE ¼ H SBO•ð Þ þ H ROHð Þ−H SBO−Hð Þ−H RO•ð Þ ð2Þ

where H(SBO•), H(ROH), H(SBO−H), and H(RO•) represent
the enthalpies of the corresponding radicals and molecules.

The SET-PT mechanism takes place in two steps: electron
transfer is the first step of this reaction (Eq. (3)), and depro-
tonation of the generated radical cation (Eq. (4)) is the second
step:

SB−OHþ RO•→SB−OH•þ þ RO− ð3Þ
SB−OH þ þ RO−→SB−O þ ROH ð4Þ

This mechanism is characterized with ΔHIP and ΔHPDE:

ΔH IP ¼ H SB−OH•þð Þ
þ H RO−ð Þ−H SB−OHð Þ−H RO•ð Þ ð5Þ

ΔHPDE ¼ H SB−O•ð Þ
þ H ROHð Þ−H SB−OH•þð Þ−H RO−ð Þ ð6Þ

where H(SB−OH•+) and H(RO−) stand for the enthalpies of
the corresponding species.

As presented in Electronic supplementary material the first
step of the SPLET mechanism is energetically notably unfa-
vorable (as it involves charge separation), which is manifested
through very large PA values (Table S1). It is reasonable to
expect that deprotonation of the phenolic Schiff bases, with
the pKa values of around 5 [17], will be facilitated in a basic
medium, for example at physiological pH of 7.4. For this
reason we investigate this mechanism under an assumption
that it takes place in a basic environment, implying that some
SB−O− anions are already present in the reaction mixture.
Thus, the SPLET mechanism can be presented as follows:

SB−O− þ RO•→SB−O• þ RO− ð7Þ
SB−OHþ RO−→SB−O− þ ROH ð8Þ

The first step is electron transfer from SB−O− to an unde-
sired radical where the SB−O• radical is built, and the second
step is reformation of the SB−O− anion. These processes are
described with the ΔHETE and ΔHPA values, which can be
calculated as follows:

ΔHETE ¼ H SB−O•ð Þ þ H RO−ð Þ−H SB−O−ð Þ−H RO•ð Þ ð9Þ

ΔHPA ¼ H SB−O−ð Þ
þ H ROHð Þ−H SB−OHð Þ−H RO−ð Þ ð10Þ

The properties of the scavenged radicals play a very impor-
tant role in the reactions with various antioxidants [18, 19].
Investigation of the effects of various radicals (hydroperoxyl
radical (•OOH), superoxide radical anion (-•O2), hydroxyl rad-
ical (•OH), and vinyl peroxy radical (CH2=CH−O−O•) on an-
tioxidant activity of the investigated Schiff bases (1–11), as
well as the influence of solvents of different polarity (water,
ethanol, and benzene) will significantly contribute to the un-
derstanding of the above mentioned processes. These four
radicals were chosen because they play an important role in
food chemistry and environmental chemistry.

Computational methods

The equilibrium geometries of all Schiff bases and their
radicals, anions, and radical cations were fully opti-
mized by the hybrid density functional method (M05-
2X) [20] and 6-311++G(d,p) basis set, [21] as imple-
mented in the Gaussian 09 package [22]. This function-
al developed by the Truhlar group yields satisfactory
performance for thermochemistry and kinetics calcula-
tions, of organic, organometallic, and biological mole-
cules. Also, this functional is useful for describing
noncovalent interactions in molecules. It is worth men-
tioning that M05-2X functional nicely reproduces
nonplanarity between rings B and C in morin and quer-
cetin [23, 24].

The influence of water (ε=78.35), ethanol (ε=24.85), and
benzene (ε=2.27) as solvents was calculated by a solute elec-
tron density (SMD) solvation model [25]. This model is based
on the quantum mechanical charge density of a solute mole-
cule interactingwith a continuum description of the solvent. In
this model name BD^ stands for Bdensity^ and means that full
solute electron density is used without defining the partial
atomic charges. It should be mentioned that all species under
investigation were fully optimized in all solvents used. The
nature of the stationary points was determined by the vibra-
tional frequencies obtained from diagonalization of the corre-
sponding Hessian matrices. For this purpose the number of
imaginary frequencies was analyzed—0 for minimum.
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Experimental

Materials and methods

The compounds salicylaldehyde, vanillin, aniline, 4-
fluoroaniline, 2-hydroxyaniline, 4-hydroxyaniline,
nordihydroguaeretic acid (NDGA), and 2,2-diphenyl-1-
picrylhydrazyl (DPPH) were obtained from Aldrich
Chemical Co. All common chemicals were of reagent grade.
The NMR spectra were run in DMSO on a Varian Gemini
200 MHz spectrometer. Melting points were determined on
a Mel-Temp capillary melting points apparatus, model 1001.
Elemental microanalyse for carbon, hydrogen, and nitrogen
were performed at the Faculty of Chemistry, University of
Belgrade.

Synthesis of Schiff bases

The procedure for synthesis of the Schiff bases (1–5), as well
as their corresponding spectral characterization are given in
reference [11].

DPPH free radical scavenging assay

The determination of the DPPH free radical scavenging activ-
ity of the examined compounds was performed according to
methodology described in ref. [26]. The investigated Schiff
bases (1–5) were reacted with the stable DPPH radical in
ethanol solution. Briefly, 1 mL (0.1 mM) of DPPH solution
in ethanol was mixed with an equal volume of the tested
compound (20 μL of compound solution in DMSO and
980 μL of ethanol). The sample is left at room temperature
for 30 and 60 min. After the period of incubation the absor-
bance was measured at 517 nm. Ethanol was used as the
control solution. IC50 values represent the concentration nec-
essary to obtain 50 % of a maximum scavenging capacity.
NDGA was used as an appropriate standard possessed 96 %
activity at 0.1 mM.

Results and discussion

The most stable conformers of the phenolic Schiff bases 1–11
[11, 27] are presented in Fig. S1. The conformers of the com-
pounds 1–5 were described in our previous paper [11].
Antioxidant activity of these compounds was determined on
the basis of the IC50 results which are presented in Fig. 1. The
IC50 values for the compounds 1–5 were obtained with the
DPPH test, while the corresponding data for the compounds
6–11 were collected from literature. It was found that com-
pounds 2, 3, and 9 are very good radical scavengers, 6–8, 10,
and 11 are slightly less active, whereas Schiff base 1 is poor
radical scavenger [11]. The reactions of 1–11 with some free

radicals of importance in food and environmental chemistry:
hydroxyl radical (•OH), hydroperoxyl radical (•OOH), super-
oxide radical anion (-•O2), and vinyl peroxy radical (CH2=CH
−O−O•) were investigated. The calculated reaction enthalpies
for all three antioxidant mechanisms (CPET, SET-PT, and
SPLET) of all Schiff bases are presented in Tables 1, 2, 3, 4,
and 5. The preferred mechanism of radical scavenging activity
of Schiff bases with the investigated free radicals can be esti-
mated on the basis of ΔHBDE, ΔHIP, ΔHPDE, ΔHPA, and
ΔHETE values. The lowest of these thermodynamic values
designates whichmechanismmay be dominant. An inspection
of Tables 1, 2, 3, 4, and 5 reveals that the ΔHETE values are
often positive (corresponding reactions are endothermic),
which would indicate that, in spite of the negative ΔHPA

values, the SPLET mechanism can be discarded. However, it
should be emphasized that small positive ΔH values (<40 kJ
mol−1) do not necessarily mean that the corresponding free
radical scavenging reactions should be neglected. These en-
dothermic processes may represent significant reaction path-
ways if they do not require high activation energies [28].

Antioxidant mechanisms of Schiff bases with hydroxyl
radical

In Table 1, the thermodynamic data regarding the reactions of
1–11 with hydroxyl radical in all solvents are collected. All
reactions of Schiff bases with •OH are exothermic in all sol-
vents when CPET and SPLET are operative mechanisms. It
should be noted thatΔHBDE andΔHIP are almost constant in
both polar solvents. On the other hand, ΔHBDE slightly in-
creases, while ΔHPA and ΔHIP significantly decrease in non-
polar solvent benzene (Table 1).

On the basis of the values of enthalpy of reactions of Schiff
bases with •OH (Table 1) it is clear that SPLET and CPET are
competitive. Generally speaking, the lowest values of reaction
enthalpies are for the p-OH group in ring A of 9, 3–5, and 8. In
the absence of this hydroxyl group, m-OH in ring B is more
reactive in comparison to other hydroxyl groups.

Antioxidant mechanisms of Schiff bases
with hydroperoxyl and vinyl peroxyl radicals

The thermodynamic data for all reactions of Schiff bases with
hydroperoxyl and vinyl peroxyl radicals in different solvents
are collected in Tables 2 and 3. The latter radical is less reac-
tive, and may mimic lipid peroxyl radicals LOO• which are
abundantly formed in biological systems. Obtained results are
different in comparison to hydroxy radical, since both peroxyl
radicals are less reactive species. Analysis of data from
Tables 2 to 3 indicates that, in general, the values of thermo-
dynamic parameters are slightly higher for vinyl peroxyl rad-
ical, which is in agreement with its lower reactivity in com-
parison to the peroxyl radicals. The values for a certain
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Fig. 1 Structure of the investigated Schiff bases and their IC50 values (μM). The values labeled with b are taken from ref. [27]

Table 1 Calculated reaction enthalpies (kJ mol−1) for the reactions of Schiff bases with hydroxyl radical

M05-2X/6-311+G(d,p)

Water Ethanol Benzene

Schiff
base*

CPET SET-PT SPLET CPET SET-PT SPLET CPET SET-PT SPLET

ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE

1-A −88.1 91.9 −179.9 −59.5 −28.6 −87.1 105.7 −192.8 −61.9 −25.2 −75.6 304.7 −380.3 −103.6 28.0

1-B −143.4 −235.3 −92.2 −51.2 −143.0 −248.7 −95.7 −47.3 −138.3 −442.9 −152.4 14.2

2-A −105.3 101.9 −207.2 −96.8 −8.5 −98.0 119.3 −217.3 −78.1 −19.9 −90.3 320.0 −410.2 −131.9 41.6

2-B −141.0 −242.9 −81.5 −59.5 −133.5 −252.8 −92.9 −40.6 −123.8 −443.8 −139.5 15.6

3-A −141.9 83.4 −225.3 −101.3 −40.6 −141.1 96.7 −237.8 −104.7 −36.3 −131.2 289.8 −421.0 −159.7 28.5

3-B −130.5 −214.0 −71.6 −59.0 −129.7 −226.5 −73.8 −55.9 −120.2 −410.0 −113.2 −7.0
4-A −144.0 92.1 −236.0 −95.5 −48.4 −143.2 105.5 −248.8 −98.5 −44.7 −134.0 299.0 −432.9 −147.1 13.2

5-A −143.8 91.3 −235.1 −96.4 −47.4 −143.0 105.0 −248.0 −99.6 −43.5 −133.3 301.5 −434.8 −151.0 17.7

6-B −129.4 96.7 −226.1 −73.5 −55.9 −128.6 110.3 −238.9 −75.6 −53.0 −118.1 308.4 −426.5 −113.2 −4.9
7-A −122.7 98.7 −221.5 −91.0 −31.8 −122.3 112.3 −235 −94.2 −28.1 −117.4 309.2 −426.6 −145.8 28.3

7-B −128.9 −227.6 −74.1 −54.8 −128.0 −240 −76.0 −51.9 −117.2 −426.4 −111.7 −5.5
8-A −133.2 85.7 −218.9 −109.1 −24.0 −132.9 99.1 −232.0 −113.2 −19.7 −129.4 293.5 −422.9 −175.8 46.4

8-B −129.9 −215.6 −71.3 −58.6 −129.1 −228.2 −73.2 −55.8 −118.9 −412.5 −109.0 −9.9
9-A3 −148.5 87.8 −236.3 −116.4 −32.1 −148.4 101.2 −249.6 −120.5 −27.9 −147.6 295.2 −442.8 −182.9 35.3

9-A4 −158.2 −246.0 −129.5 −28.7 −158.2 −259.3 −134.0 −24.2 −158.1 −453.3 −202.0 43.9

9-B −129.4 −217.2 −71.3 −58.1 −128.4 −229.6 −73.1 −55.3 −117.2 −412.5 −107.4 −9.9
10-B −129.3 97.6 −226.9 −73.9 −55.4 −128.3 111.1 −239.4 −75.7 −52.6 −117.4 306.4 −423.9 −110.5 −7.0
11-B −130.2 83.8 −214.0 −70.8 −59.4 −129.3 97.0 −226.4 −72.7 −56.7 −118.6 288.9 −407.6 −107.9 −10.8

* The numbers denote the compounds in Figs. 1 and S1, whereas A and B stand for the A and B rings. A3 and A4 denote the positions 3 and 4 on the A
ring. The same holds for Tables 2, 3, and 4
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thermodynamic quantity are mutually very similar in the two
polar solvents (ΔHBDE and ΔHIP values are almost identical
for both radicals in water and ethanol). One may assume that
these two radicals obey the SPLET mechanism in all three
solvents, where the reactions of heterolytic cleavage of the
O-H bond (PAvalues) are particularly exothermic in benzene.
The order of reactivity of the investigated compounds is the
same as in the case of hydroxyl radical (Table 2).

Antioxidant mechanisms of Schiff bases with superoxide
radical anion

In the case of the reactions of Schiff bases with superoxide
radical anionΔHBDE has large positive values in all solvents.
Furthermore, these values are almost identical in all used sol-
vents. All these facts show, in accordance with our expecta-
tions, that CPET is not a plausible mechanism for the reactions
of Schiff bases and superoxide radical anion in polar and non-
polar solvents. In polar solvents the reaction enthalpies for the
other two mechanisms are endothermic, except forΔHPA val-
ue for compound 9 (Table 4). The ΔHPA values significantly
decrease in nonpolar solvent, except for 10 and 11. One can
suppose that all compounds, except for 10 and 11, can under-
go the SPLET mechanisms with the superoxide radical anion

in suitable solvents. However, we cannot claim, just on the
basis of endothermicity of the reactions, that other Schiff bases
will not obey the SPLET mechanism. Such assumption needs
to be confirmed or negated with the activation energy values.

Our results show that the superoxide radical anion is not
particularly reactive. This finding is in agreement with the
well-known fact that the superoxide radical anion is in equi-
librium with its protonated form, the hydroperoxyl radical,
whose pKa is 4.9 [29–31].

O2
−• þ Hþ→HO2

•

Thus, at physiological pH most of the O2
-•/HO2

• radical
pair exists in the dissociated form, which is less reactive than
its conjugate acid. In addition, O2

-• can react with H2O2 to
generate singlet oxygen and the hydroxyl radical, which are
much more powerful oxidants.

Taking into account theΔHIP values (Tables 1, 2, 3, and 4)
one can suppose that SET-PT is not the operative scavenging
mechanism with the radicals under investigation [32, 33].
Namely, ΔHIP values increase with the decreasing dielectric
constant of used solvents. Apparently, the first step of the
SET-PT mechanism, formation of the radical cation in the
presence of free radicals (Eqs 3 and 5), is too endothermic. It
is known that radical cations, which are odd-electron positive

Table 2 Calculated reaction enthalpies (kJ mol−1) for the reactions of Schiff bases with peroxy radical

M05-2X/6-311+G(d,p)

Water Ethanol Benzene

Schiff base CPET SET-PT SPLET CPET SET-PT SPLET CPET SET-PT SPLET

ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE

1-A 47.9 184.5 −137.0 −16.5 64.4 48.8 198.0 −149.2 −18.3 67.1 58.8 385.7 −326.9 −50.2 109.0

1-B −7.4 −192.3 −49.2 41.8 −7.1 −205.1 −52.1 45.0 −3.8 −389.5 −99.0 95.2

2-A 30.7 194.9 −164.3 −53.9 84.5 37.9 211.6 −173.6 −34.4 72.4 44.2 401.0 −356.8 −78.5 122.6

2-B −5.0 −199.9 −38.5 33.5 2.4 −209.2 −49.2 51.7 10.6 −390.4 −86.1 96.7

3-A −5.9 176.5 −182.3 −58.3 52.5 −5.1 189.0 −194.2 −61.1 56.0 3.2 370.8 −367.6 −106.3 109.5

3-B 5.5 −171.0 −28.6 34.1 6.2 −182.8 −30.2 36.4 14.2 −356.6 −59.8 74.0

4-A −8.0 185.1 −193.1 −52.6 44.6 −7.3 197.8 −205.1 −54.9 47.6 0.5 380.0 −379.5 −93.8 94.2

5-A −7.8 184.4 −192.2 −53.4 45.6 −7.1 197.3 −204.4 −55.9 48.8 1.1 382.5 −381.4 −97.6 98.8

6-B 6.6 189.7 −183.1 −30.6 37.1 7.4 202.6 −195.3 −31.9 39.3 16.3 389.5 −373.1 −59.8 76.2

7-A 13.3 191.8 −178.5 −48.0 61.3 13.6 204.6 −191.0 −50.6 64.2 17.0 390.0 −373.2 −92.4 109.4

7-B 7.1 −184.6 −31.1 38.3 8.0 −196.6 −32.4 40.4 17.2 −373.0 −58.3 75.5

8-A 2.8 178.8 −176.0 −66.2 69.0 3.0 191.4 −188.4 −69.6 72.6 5.0 374.6 −369.5 −122.4 127.5

8-B 6.1 −172.7 −28.3 34.4 6.9 −184.5 −29.6 36.5 15.5 −359.1 −55.7 71.1

9-A3 −12.5 180.9 −193.4 −73.4 60.9 −12.5 193.4 −206.0 −76.9 64.3 −13.2 376.2 −389.4 −129.5 116.4

9-A4 −22.2 −203.0 −86.5 64.3 −22.2 −215.7 −90.4 68.1 −23.7 −400.0 −148.6 124.9

9-B 6.6 −174.2 −28.3 35.0 7.5 −185.8 −29.4 36.9 17.2 −359.1 −54.0 71.1

10-B 6.7 190.7 −183.9 −30.9 37.7 7.6 203.4 −195.8 −32.1 39.7 17.0 387.5 −370.5 −57.1 74.0

11-B 5.8 176.9 −171.1 −27.8 33.6 6.6 189.3 −182.7 −29.0 35.6 15.8 370.0 −354.2 −54.5 70.3
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species, can be formed in different ways: by means of UVand
visible light [34–38] and chemical oxidants [39–41], as well
as in electrochemical processes [42–44] and metal-catalyzed
oxidations [45–48]. In addition, radical cations can be obtain-
ed from electron-rich cyclopropanes, arylalkenes, and dienes
using appropriate oxidizing agents [49]. It is clear that inter-
mediate radical cations are formed under extreme conditions,
and these processes cannot be expected to occur in vivo, but
only in vitro. Once formed radical cations can react with
Schiff bases:

SB−OHþ ROOH⋅þ→SB−OH⋅þ þ ROOH ð11Þ

For this reaction ΔHIP value can be calculated as follows:

ΔH IP ¼ H SB−OH⋅þð Þ
þ H ROOHð Þ−H SB−OHð Þ−H ROOH⋅þð Þ ð12Þ

ΔHIP values for formation of radical cations of investigated
Schiff bases with hydroperoxyl and vinyl peroxyl radical cat-
ions are presented in Table 5. All ΔHIP values are negative,
which means that newly formed radical cations of Schiff bases
are more stable than the starting radical cations. The second
step of the SET-PT mechanism is deprotonation of the radical
cation with different bases [50]. Since all ΔHPDE values

indicate that the second step of the SET-PT mechanism is
exothermic (Tables 3 and 4), one can assume that, provided
that radical cations of Schiff bases are obtained in the reaction
(11), SET-PT can be the dominant scavenging mechanism.

SAR and QSAR analysis

The structure activity relationship (SAR) examines the rela-
tionships between the structure of chemical compounds and
their biological activity. A brief SAR study of the examined
compounds can relate their chemical structure and antioxidant
activity. On the basis of the measured IC50 values in Fig. 1 it is
clear that the position of the OH groups, and to which aromat-
ic ring they are bound, A or B, are of crucial importance to
antioxidant capacity of the observed compounds. On the basis
of the number and position of the OH groups the antioxidant
Schiff bases can be divided into two groups.

The first group is without OH group in the ortho position
on ring B (compounds 1, 4, and 5, IC50 between 116 and
275 μM). The compounds 4 and 5 do not have any OH group
on ring B, and the structure of their ring A is the same. The
difference between them is that there is F in the para position
of ring B in 5, which reduces the value of IC50 because the
inductive effect of fluorine is stronger than the resonance

Table 3 Calculated reaction enthalpies (kJ mol−1) for the reactions of Schiff bases with vinylperoxy radical

M05-2X/6-311+G(d,p)

Water Ethanol Benzene

Schiff base CPET SET-PT SPLET CPET SET-PT SPLET CPET SET-PT SPLET

ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE

1-A 51.8 158.4 −106.6 13.9 37.9 52.7 170.5 −117.7 13.1 39.6 63.1 342.1 −279.0 −2.3 65.4

1-B −3.5 −161.9 −18.8 15.3 −3.1 −173.6 −20.7 17.5 0.5 −341.6 −51.1 51.6

2-A 34.6 168.4 −133.9 −23.5 58.0 41.9 184.1 −142.2 −3.0 44.9 48.5 357.4 −308.9 −30.5 79.0

2-B −1.1 −169.5 −8.1 7.0 6.4 −177.7 −17.8 24.2 14.9 −342.5 −38.1 53.1

3-A −2.0 150.0 −151.9 −27.9 26.0 −1.2 161.5 −162.7 −29.6 28.5 7.6 327.2 −319.7 −58.3 65.9

3-B 9.4 −140.6 1.8 7.6 10.1 −151.4 1.3 8.9 18.6 −308.7 −11.8 30.4

4-A −4.1 158.6 −162.7 −22.2 18.1 −3.4 170.3 −173.7 −23.4 20.1 4.8 336.4 −331.6 −45.8 50.6

5-A −3.9 157.9 −161.8 −23.0 19.1 −3.2 169.8 −172.9 −24.5 21.3 5.5 338.9 −333.5 −49.7 55.1

6-B 10.5 163.2 −152.8 −0.2 10.6 11.3 175.1 −163.8 −0.5 11.8 20.7 345.9 −325.2 −11.9 32.5

7-A 17.2 165.3 −148.1 −17.6 34.8 17.5 177.1 −159.5 −19.2 36.7 21.3 346.6 −325.3 −44.4 65.8

7-B 11.0 −154.2 −0.8 11.8 11.9 −165.2 −1.0 12.9 21.6 −325.0 −10.4 31.9

8-A 6.7 152.3 −145.6 −35.8 42.5 7.0 163.9 −156.9 −38.2 45.1 9.4 331.0 −321.6 −74.5 83.9

8-B 10.0 −142.3 2.1 7.9 10.8 −153.1 1.8 9.0 19.8 −311.1 −7.7 27.5

9-A3 −8.6 154.4 −163.0 −43.0 34.4 −8.6 165.9 −174.5 −45.4 36.8 −8.8 332.6 −341.5 −81.6 72.7

9-A4 −18.3 −172.6 −56.1 37.8 −18.3 −184.3 −58.9 40.6 −19.4 −352.0 −100.7 81.3

9-B 10.5 −143.8 2.1 8.5 11.4 −154.5 2.0 9.4 21.5 −311.1 −6.0 27.5

10-B 10.6 164.2 −153.5 −0.5 11.2 11.5 175.9 −164.4 −0.6 12.2 21.3 343.8 −322.5 −9.1 30.4

11-B 9.7 150.4 −140.7 2.6 7.1 10.5 161.8 −151.3 2.4 8.1 20.1 326.4 −306.2 −6.5 26.7
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effect. The IC50 value of 1 higher than 200 μM suggests that
this compound is biologically inactive [51], while the other
two compounds are very modest antioxidants.

The second group comprises the compounds with the OH
group in the ortho position on ring B (2, 3, 6–11, IC50 between
7.7 and 28.1 μM). These compounds show good antioxidant
activity, where the following order is observed: 3>9>2>6≈
7≈8≈10>11. The IC50 values for 3 and 9 are slightly higher

than the corresponding values for flavones and flavonols. For
example, the IC50 value of 3 is 7.7, while the corresponding
value for quercetin is 5.1 [51], which is consistent with the
BDE values in water of 358 (Table S1) and 333 kJ mol−1,
respectively [50]. In the most active Schiff bases 3 and 9,
the two sp3 oxygen atoms are ortho to each other in ring A,
which makes the compounds particularly active. This positive
impact of both electron donating groups is in agreement with

Table 4 Calculated reaction enthalpies (kJ mol−1) for the reactions of Schiff bases with superoxide radical anion

M05-2X/6-311+G(d,p)

Water Ethanol Benzene

Schiff base CPET SET-PT SPLET CPET SET-PT SPLET CPET SET-PT SPLET

ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE ΔHBDE ΔHIP ΔHPDE ΔHPA ΔHETE

1-A 133.7 410.4 −276.7 69.3 64.4 135.3 439.2 −303.9 68.2 67.1 154.3 855.3 −701.0 45.3 109.0

1-B 78.4 −332.0 36.6 41.8 79.4 −359.8 34.4 45.0 91.6 −763.7 −3.5 95.2

2-A 116.5 420.4 −303.9 32.0 84.5 124.4 452.8 −328.4 52.0 72.4 139.7 870.6 −730.9 17.0 122.6

2-B 80.8 −339.6 47.3 33.5 88.9 −363.9 37.2 51.7 106.1 −764.5 9.4 96.7

3-A 80.0 402.0 −322.0 27.5 52.2 81.4 430.3 −348.9 25.4 56.0 98.7 840.4 −741.7 −10.8 109.5

3-B 91.3 −310.7 57.2 34.1 92.7 −337.6 56.3 36.4 109.7 −730.7 35.7 74.0

4-A 77.9 410.6 −332.8 33.2 44.6 79.2 439.0 −359.9 31.6 47.6 95.9 849.6 −753.6 1.7 94.2

5-A 78.0 409.9 −331.9 32.4 45.6 79.4 438.5 −359.1 30.6 48.8 96.6 852.2 −755.5 −2.1 98.8

6-B 92.4 415.2 −322.8 55.3 37.1 93.8 443.8 −350.0 54.6 39.3 111.8 859.1 −747.2 35.7 76.2

7-A 99.1 417.3 −318.2 37.8 61.3 100.1 445.8 −345.7 35.9 64.2 112.5 859.8 −747.4 3.1 109.4

7-B 93.0 −324.3 54.7 38.3 94.4 −351.4 54.1 40.4 112.7 −747.1 37.2 75.5

8-A 88.6 404.3 −315.7 19.6 69.0 89.5 432.6 −343.1 16.9 72.6 100.5 844.2 −743.6 −26.9 127.5

8-B 91.9 −312.4 57.5 34.4 93.4 −339.3 56.9 36.5 111.0 −733.2 39.8 71.1

9-A3 73.3 406.4 −333.1 12.4 60.9 74.0 434.7 −360.7 9.6 64.3 82.3 845.9 −763.5 −34.0 116.4

9-A4 63.7 −342.7 −0.7 64.3 64.2 −370.4 −3.9 68.1 71.8 −774.1 −53.1 124.9

9-B 92.4 −313.9 57.5 35.0 94.0 −340.7 57.0 36.9 112.7 −733.2 41.5 71.1

10-B 92.6 416.2 −323.6 54.9 37.7 94.1 444.6 −350.5 54.4 39.7 112.5 857.1 −744.6 38.4 74.0

11-B 91.6 402.4 −310.8 58.0 33.6 93.1 430.5 −337.5 57.5 35.6 111.3 839.6 −728.3 41.0 70.3

Table 5 Calculated reaction
enthalpies (kJ mol−1) for the
reactions of Schiff bases with
radical cation

Schiff base Water Ethanol Benzene

HOOH•+ CH2CHOOH
•+ HOOH•+ CH2CHOOH

•+ HOOH•+ CH2CHOOH
•+

1 −161.0 −54.9 −164.6 −56.7 −216.8 −85.9
2 −151.0 −44.9 −151.0 −43.1 −201.5 −70.6
3 −169.5 −63.3 −173.6 −65.6 −231.7 −100.7
4 −160.8 −54.7 −164.8 −56.8 −222.5 −91.6
5 −161.6 −55.4 −165.4 −57.4 −220.0 −89.0
6 −156.2 −50.1 −160.0 −52.0 −213.1 −82.1
7 −154.2 −48.0 −158.0 −50.1 −212.3 −81.3
8 −167.2 −61.0 −171.2 −63.3 −227.9 −97.0
9 −165.1 −58.9 −169.2 −61.2 −226.3 −95.3
10 −155.3 −49.1 −159.2 −51.3 −215.1 −84.1
11 −169.1 −62.9 −173.3 −65.3 −232.6 −101.6
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the literature data on the structure–antioxidant activity rela-
tionships of polyphenols with the catechol and guaiacol moi-
eties. Similar behavior of 3 and 9 is not surprising, since the
only difference between these two compounds is on the A
ring, where in 3 this ring is guaiacol-like, and in 9 it is cate-
chol-like. Small difference in the IC50 values is in accordance
with the antioxidant activity of other similar pairs of com-
pounds, such as caffeic and ferulic acids, or protocatechuic
and vanilic acids [52]. The SAR analysis revealed that only
those Schiff bases with the OH group in the ortho position of
the ring B exhibit notable antioxidant activity. For this reason,
these compounds (2, 3, 6–11) were further subjected to the
quantitative structure-activity relationship (QSAR) analysis.

QSAR is an analytical application that can be used to in-
terpret the quantitative relationship between the activities of a
particular molecule and its structure. Some generally accepted
principles as correct data selection and partition, selection of
molecular descriptors, testing of the models’ complexity and
robustness, model validation and model accuracy estimation,
are used in the development of QSARmodels [53, 54]. QSAR
models are to be simple and should rely on descriptors with
clear physicochemical interpretation.

In our previous paper [54] BDE and number of neighbor-
ing OH groups were used as good descriptors for describing
the antioxidant capacity of polyhydroxy phenolic compounds.
In this paper the number of neighboring oxygen atoms instead
of neighboring OH groups were used as molecular descrip-
tors, Eq. (13).

IC50 ¼ A� BDE þ B� nOþ C ð13Þ

In the above equation R is the correlation coefficient, s the
standard error of estimate, F is Fisher’s F-value, while A, B,
and C represent corresponding fitting coefficients.

Obtained results, Table 6, with the R values of 0.90 for all
radicals under investigation, show good agreement between
the IC50 values on one side, and BDE and the number of
neighboring oxygen atoms on the other side. In this way
BDE and the number of neighboring oxygens proved to be
properly selected descriptors for describing antioxidant activ-
ity of the phenolic Schiff bases. The type of the radical does
not influence the correlation quality. However, the examined
sample is too small to derive any general conclusion.

Conclusion

In this paper, the antioxidant properties of phenolic Schiff
bases in the presence of •OH, •OOH, (CH2=CH−O−O•), and
-•O2 were investigated. Using the thermodynamic values:
ΔHBDE, ΔHIP, ΔHPDE, ΔHPA, and ΔHETE, the CPET, SET-
PT, and SPLET mechanisms were considered.

The ΔHIP values reveal that SET-PT is not an operative
antioxidant mechanism when Schiff bases react with radicals
under investigations. Changing the reaction conditions, when
the reactive particle is not radical but radical cation, then the
SET-PT mechanism can be the dominant mechanism, because
ΔHIP values are lower than ΔHBDE and ΔHPA.

On the basis of the values in Table 1, one may suppose that
SPLET and CPET are competitive mechanisms for radical
scavenging of hydroxy radical in all solvents under investiga-
tion. The CPET is dominant in polar solvents, while SPLET
prevails in benzene.

Two peroxy radicals, •OOH and CH2=CH−O−O•,
(Tables 2 and 3), unlike hydroxyl radical, will react via
SPLET mechanism in polar and nonpolar solvents.

The results presented in Table 4 lead to an assumption that
investigated phenolic Schiff bases will not react with superox-
ide radical anion in nonpolar solvents. Moreover, these Schiff
bases will react with superoxide radical very slowly.

The obtained results provide a fruitful field for further re-
search, for example, mechanistic investigations of the antiox-
idant properties of Schiff bases. Such investigation will pro-
vide the rate constants through activation energies, which will
contribute to either confirmation or denial of all assumptions
derived from this thermodynamic study.

The SAR analysis reveals that the position of the OH
groups plays a very important role in the antioxidant activity
of the investigated Schiff bases. Actually, only the compounds
with OH group in the ortho position on the ring B exhibit
notable antioxidant activity. The QSAR analysis showed that
BDE values and number of neighboring oxygen atoms are
good descriptors of antioxidant activity of the phenolic
Schiff basis.
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