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Abstract – In this paper, we derive the new closed-form 
expressions for bit error rate (BER) in detecting quadrature 
amplitude modulation signals transmitted over gamma-
shadowed Nakagami-m fading channels. By using those 
expressions, the effects of fading and shadowing severity 
and average signal-to-noise ratio on BER performance are 
analyzed. 

1. INTRODUCTION 

 Quadrature amplitude modulation (QAM) is widely used 
technique to achieve high transmission rate without 
increasing the bandwidth [1], [2]. Calculation of bit error 
rate (BER) occupied attention of researches, first in the 
channel with additive white Gaussian noise (AWGN), and 
after that, in the channels with different types of fading [3]-
[6]. 

 In wireless communication, fading is one of the main 
problems. Several statistical models describe fading, e.g. 
Rayleigh, Rice and Nakagami model. Nakagami model is 
more general than Rayleigh and Rice, and therefore it is very 
used in observations. The basis in all these fading models is 
the assumption that the average signal power is constant.  
But, the presence of tall structures in the path of the signal 
and the existence of multiple scattering may lead to the case 
where the received average power becomes random. This 
phenomenon is called shadowing. Firstly, the shadowing was 
modeled by lognormal distribution, but the gamma 
distribution has been accepted as more convenient. Since 
fading (short term) and shadowing (long term fading) occur 
simultaneously in wireless systems, it is necessary to have 
models that can describe the faded and shadowed channel 
[7]-[10]. In this paper, we considered composite signal 
described by gamma-shadowed Nakagami-m fading model. 

 The analyses BER performances of a two-dimensional 
amplitude modulation, M-ary square QAM and an IxJ 
rectangular QAM signals over AWGN channel was 
presented in [3]. The same BER performances over the 
Nakagami-m channel were shown in [4]. In this paper, the 
new closed-form expressions for BER in detecting QAM 
signal transmitted over gamma-shadowed Nakagami-m 
fading channel are derived. The BER dependence on fading 
and shadowing severity and average signal-to–noise ratio 
(SNR) per bit is presented. 

2. SYSTEM MODEL 

 Using the M-ary square QAM modulation, transmitted 
signal consists of two independently amplitude-modulated 
carriers in quadrature expressed by [1], [2] 

     TttfAtfAts cjcI  0  ,2sin2cos)(  , (1) 

where AI and AJ are the amplitudes of in-phase and 
quadrature components, fc is the carrier frequency, and T is 
the symbol period. Depending on the number of possible 
symbols M, two distinct QAM constellations can be 
distinguish: square constellations with even number of bits 
per symbol, and rectangular constellations where the number 
of bits per symbol is odd. 

 In M-ary square QAM, log2M bits of the serial 
information stream are mapped on a two-dimensional signal 
constellation using Gray coding. In (1), AI and AJ are 

selected independently over the set  dMdd )1(,...,3,   

where 2d is the Euclidean distance between two adjacent 
signal points.   

 In this paper, we consider the case when the signal is 
transmitted from the transmitter to the receiver via channel 
with gamma-shadowed Nakagami-m fading.  

 Let the received signal envelope r has Nakagami 
distribution given by [7] 
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where m )5.0(  m  is the Nakagami parameter, Ω is the 

average power ][ 2rE  with E denoting mathematical 

expectation and (.) is the gamma function. The m 
parameter refers to the fading severity. In the case m=1, we 

have Rayleigh fading, and m=∞ is the no-fading case. When 

m>1, the Nakagami-m distribution behaves like the Rician 
distribution.  

 In the case when the shadowing is present, Ω is random 
variable and has gamma distribution given by [7] 
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where ][ Es  is the gamma shadow area mean power. 

The parameter ms )0(  sm infleunces on the shadowing 

severity. In the case m=∞, shadowing is not exist. 
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 The composite envelope r of the gamma-shadowed 

Nakagami-m faded signal is: 
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Substituting (2) and (3) in (4), we have 

 
2

)()(

4
)(

smm

s

s

s
r

mm

mm
rp













  

 















 



s

s
mm

mm mm
rKr

s
s 21  (5) 

where Kν(.) is the modified Bessel function of the second 

kind and order ν and 22 ][ rrEs   is the average power. 

 Now, in the presense of gamma-shadowed Nakagami-m 
fading, the QAM signal is: 

    tfArtfArts cjcIr  2sin2cos)(  , (6) 

where r is the composite envelope of received signal that has 

the distribution given by (5). 

The instantaneous SNR per symbol, s, and the average 

SNR, 0s, are related by: 
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The instantaneous SNR per symbol is Ms 2log  , 

where  is the instantaneous SNR per bit. The average SNR 

per symbol is Ms 200 log  , where 0 is the 

instantaneous SNR per bit. 

 The distribution of the SNR per bit can be found using 
standard technique of transforming random variables: 
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3. GENERAL BER EXPRESSION OF M-ARY SQUARE 
QAM OVER THE GAMMA-SHADOWED 
NAKAGAMI-m FADING CHANNEL 

 Using [3, eq. (14)], the conditional kth bit error 
probability of M-ary square QAM can be expressed by 
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where erfc(.) is the complementary error function and � 

denotes the instantaneous SNR per bit. Since the 
instantaneous SNR per bit is random variable, in order to 
obtain average the kth bit error probability of M-ary square 
QAM, it is necessary to average previous expression. So, we 
have 
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where p(�) is given by (9). 

 Now, using (9) and (10), the bit error probability Pb(k) 
(kth bit is in error) can be expressed as 
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 Integral in (11) can be solved by representing 
complementary error function and modified Bessel function 
in terms of Meijer's G functions using [8, eqs. 
(03.04.26.0009.01) and (06.27.26.0006.01)], and afterwards 
using [8, eq. (07.34.21.0011.01)]. The eq. (11) becomes 
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where  qp
nmG ,

, denotes Meijer G-function. 

 Using [3, eq. (16)], the exact expression of average BER 
of M-ary square QAM is given by 
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where Pb(k) is given by (12). 

 An approximate BER expression for M-ary square QAM 
can be obtained from (13) by neglecting higher order terms. 
If only the first and the second terms (i=0,1) in (12) are 
considered, we have  
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 For high SNR, the first term (i=0) is dominant in (13). 
Then the BER of M-ary square QAM can be approximated to 
a certain degree of accuracy as  
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4. GENERAL BER EXPRESSION OF M-ARY 
RECTANGULAR QAM OVER THE GAMMA-
SHADOWED NAKAGAMI-m FADING CHANNEL 

 In the similar way, using [3, eq. (20), (21), (22)], the 
average BER of M-ary rectangular QAM can be determined. 
The average BER of I × J rectangular QAM over gamma-
shadowed Nakagami fading channel is  
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where 
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and 
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 Note that for MJI  , (16) reduces to (13), i.e. the 

average BER of square M-ary QAM is the same as for the 
rectangular. 

 For high SNR, the terms with i=0 and j=0 in (17) and 
(18), respectively, will be dominant, so an approximate BER 
of M-ary rectangular QAM can be obtained from (16)   
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Fig.1. BER dependence on average SNR for different fading 
severeness. 
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When MJI  , (20) reduces to (15). 

5. NUMERICAL RESULTS 

 The numerical results are obtained by expressions (12) 
and (13) for square QAM, and (16), (17) and (18) for 
rectangular QAM. 

 Fig.1. shows BER dependence on average SNR for 
different values of fading parameter m. We can see that the 
performance of the system is the worst when the m=0.5. 
With decreasing value of fading parameter m, we have 
severe fading. 

 Fig.2. shows BER dependence on average SNR for 
different values of shadowing parameter ms, while the fading 
parameter is m=1. With increasing values of SNR, the BER 
is lower. We can see that the performance of the system is 
the worst when the ms=0.5. For SNR=25 dB, the value of 
BER is 0.029 when the value of ms=0.5, and 0.002 when the 
value of 
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Fig.2. BER dependence on average SNR for different 
shadowing severeness. 

2 4 6 8 10

5

10

15

20

25

30

35

40

   P
b
=10

-4

   P
b
=10

-3

   P
b
=10

-2

m=3
8QAM

 
 [
d
B

]

m
s  

Fig.3. Average SNR dependence on parameter ms for 
different values of BER. 

ms=4.When the value of the parameter ms is lower, the 
system has worse performance, i.e. the influence of 
shadowing is bigger.  

 Fig.3. shows how the parameter ms influence on average 
SNR per bit during 8QAM. Lower values of ms require 
larger power of the signal if the certain BER is wanted, i.e. 
the shadowing is more expressed. For ms=2, SNR is 24.97 
when the value of BER is 10-4, and SNR is 12.99 when the 
value of BER is 10-2. When better perfomance system is 
wanted  (lower value of BER), larger power of the signal is 
needed. 

 Fig.4. shows the results for different type of QAM. It is 
noticed that with higher order of QAM, the performance of 
BER is worse, but the larger amount of information is 
transmitted. 

 

CONCLUSION 

 In this paper we have analyzed M-ary QAM transmission 
over the channel with gamma-shadowed Nakagami-m 
fading. The closed-form experssions for BER have been 
derived and used for observing the BER performances. The 
effects of the fading and shadowing parameters and average 
signal-to-noise ratio on the BER performances have been 
noted. 
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